The emission of a bright blue fluorescence is a unique feature common to the vast variety of polymer carbon dots (CDs) prepared from carboxylic acid and amine precursors. However, the difficulty to assign a precise chemical structure to this class of CDs yet hampers the comprehension of their underlying luminescence principle. In this work, we show that highly blue fluorescent model types of CDs can be prepared from citric acid and ethylenediamine through low temperature synthesis routes. Facilitating controlled polycondensation processes, the CDs reveal sizes of 1-1.5 nm formed by a compact network of short polyamide chains of about 10 monomer units. Density functional theory calculations of these model CDs uncover the existence of a spatially separated highest occupied molecular orbital and a lowest unoccupied molecular orbital located at the amide and carboxylic groups, respectively. Photoinduced charge transfer between these groups thus constitutes the origin of the strong blue fluorescence emission. Hydrogen-bond-mediated supramolecular interactions between the polyamide chains enabling a rigid network structure further contribute to the enhancement of the radiative process. Moreover, the photoinduced charge transfer processes in the polyamide network structure easily explain the performance of CDs in applications as revealed in studies on metal ion sensing. These findings thus are of general importance to the further development of polymer CDs with tailored properties as well as for the design of technological applications.
Several samples of palladium-loaded single-wall carbon nanotubes and palladium-loaded MAXSORB activated carbon were prepared by means of the reaction of the raw carbon support with Pd2(dba)3.CHCl3. When carbon nanotubes were used as the support, the palladium content in the samples reached 13-31 wt % and fine particles of 5-7 nm average size were obtained. In the case of the samples with MAXSORB as the support, the palladium content was higher (30-50 wt %) and the particle size larger (32-42 nm) than in the nanotube samples. At 1 atm and room temperature, the hydrogen capacity of the palladium-loaded samples exceeds 0.1 wt % and is much higher than the capacity of the raw carbon supports (less than 0.01 wt %). The maximum hydrogen capacity at 1 atm and room temperature was found to be 0.5 wt %. A maximum hydrogen capacity of 0.7 wt % was obtained at 90 bar in a palladium-loaded MAXSORB sample, while the capacities for the raw carbon nanotubes and MAXSORB at the same pressure were 0.21 and 0.42 wt %, respectively. At low pressure, it was observed that the H/Pd atomic ratios in the palladium-loaded samples were always higher than in the bulk Pd. The spillover effect is considered as a possible cause of the high H/Pd atomic ratios. On the other hand, the effect of the pressure increase on the spillover was observed to be very low at high pressure and room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.