Previously we found that the frequency of IFN-γ-producing CD8+ T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease along with low levels of IL-2-secreting CD8+ T cells in all clinical stages. This impairment of the parasite-specific T cell responses was associated with phenotypic features of immune senescence of the CD8+ T cell compartment. These data prompted us to address the question of whether the CD4+ T cell compartment also experiences signs of exhaustion. Thus, we performed a functional and phenotypical characterization of T. cruzi-specific and overall CD4+ T cells in chronically infected subjects with different degrees of cardiac dysfunction. The results show an inverse association between disease severity and the frequency of T. cruzi-specific IFN-γ-producing CD4+ T cells. The high expression of CD27 and CD28 with a relative low expression of CD57 found on CD4+IFN-γ + T cells suggests that the effector T cell pool in chronic T. cruzi infection includes a high proportion of newly recruited T cells, but a low frequency of long-term memory cells. The total CD4+ T cell compartment shows signs of senescence and later stages of differentiation associated with more severe stages of the disease. These findings support the hypothesis that long-term T. cruzi infection in humans might exhaust long-lived memory T cells.
Twelve 7‐chloroquinoline derivatives were designed and synthesized using the principle of molecular hybridization through the coupling of 2‐[2‐(7‐chloroquinolin‐4‐ylthio)‐4‐methylthiazol‐5‐yl]acetic acid 1 with various benzoyl hydrazines 2a–l. The synthetic compounds were tested as antimalarials. Some of them showed an efficient in vitro activity as inhibitors of β‐hematin formation and an in vivo activity in a murine model, resulting in compounds 8 and 9 as the most active ones with IC50 values of 0.65 ± 0.09 and 0.64 ± 0.16 µM, respectively. The effects of the compounds on the cell viability, cell cycle, and apoptosis induction of A549 and MCF‐7 cancer cell lines were also examined. Our data showed that compounds 6 and 12 were the most active agents, decreasing the cell viability of MCF‐7 cells with IC50 values of 15.41 and 12.99 µM, respectively. None of the compounds analyzed significantly affected the viability of peripheral blood mononuclear cells. Also, significant induction of apoptosis was observed when both cancer cell lines were incubated with compounds 6 and 12. In MCF‐7 cells, treatment with these compounds led to cell cycle arrest in the G0/G1 phase. The results obtained suggest that these structures may be useful in developing new therapies for malaria and cancer treatment.
Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.