Low alloy steels combine relatively low cost with exceptional mechanical properties, making them commonplace in oil and gas equipment. However, their strength and hardness are restricted for sour environments to prevent different forms of hydrogen embrittlement. Materials used in sour services are regulated by the ISO 15156-2 standard, which imposes a maximum hardness of 250 HV (22 HRC) and allows up to 1.0 wt% Ni additions due to hydrogen embrittlement concerns. Low alloy steels that exceed the ISO 15156-2 limit have to be qualified for service, lowering their commercial appeal. As a result, high-performing, usually high-nickel, low alloy steels used successfully in other industries are rarely considered for sour service. In this work, the hydrogen stress cracking resistance of the high-nickel (3.41 wt%), quenched and tempered, nuclear-grade ASTM A508 Gr.4N low alloy steel was investigated using slow strain rate testing as a function of applied cathodic potential. Results showed that the yield strength and ultimate tensile strength were unaffected by hydrogen, even at a high negative potential of -2.00 V<sub>Ag/AgCl</sub>. Hydrogen embrittlement effects were observed once the material started necking, manifested by a loss in ductility with increasing applied cathodic potentials. Indeed, A508 Gr.4N was less affected by hydrogen at high cathodic potentials than a low-strength (yield strength = 340 MPa) ferritic-pearlitic low alloy steel of similar nickel content. Additionally, hydrogen diffusivity was measured using the hydrogen permeation test. The calculated hydrogen diffusion coefficient of the ASTM A508 Gr.4N was two orders of magnitude smaller when compared to that of ferritic-pearlitic steels. Hydrogen embrittlement and diffusion results were linked to the microstructure features. The microstructure consisted in a bainitic/martensitic matrix with the presence of Cr<sub>23</sub>C<sub>6</sub> carbides as well as Mo and V-rich precipitates, which might have played a role in retarding hydrogen diffusion, kept responsible for the improved HE resistance.
Dual-phase low-alloy steels combine a soft ferrite phase with a hard martensite phase to create desirable properties in terms of strength and ductility. Nickel additions to dual-phase low-alloy steels can increase the yield strength further and lower the transformation temperatures, allowing for microstructure refining. Determining the correct intercritical annealing temperature as a function of nickel content is paramount, as it defines the microstructure ratio between ferrite and martensite. Likewise, quantifying the influence of nickel on the intercritical temperature and its synergistic effect with the microstructure ratio on mechanical properties is vital to designing dual-phase steels suitable for corrosive oil and gas services as well as hydrogen transport and storage applications. In this work, we used a microstructural design to develop intercritical annealing heat treatments to obtain dual-phase ferritic–martensitic low-alloy steels. The intercritical annealing and tempering temperatures and times were targeted to achieve three different martensite volume fractions as a function of nickel content, with a nominal content varying between 0, 1, and 3-wt% Ni. Mechanical properties were characterized using tensile testing and microhardness measurements. Additionally, the microstructure was studied using scanning electron microscopy coupled with electron backscatter diffraction analysis. Tensile strength increased with increasing martensite ratio and nickel content, with a further grain refinement effect found in the 3-wt% Ni steel. The optimal heat treatment parameters for oil and gas and hydrogen transport applications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.