Cytosolic free calcium concentration ([Ca2+]i) was measured in single microdissected rat medullary collecting tubules [outer (OMCD) and inner (IMCD)] to identify receptors involved in vasopressin (AVP)-induced [Ca2+]i increases. In both segments, [Phe2,Orn8]vasotocin ([Phe2,Orn8]VT), a specific V1 agonist, as well as the V2 agonist 1-desamino-8-D-AVP (dDAVP) triggered [Ca2+]i variations. In OMCD, the mean response to 10 nM AVP roughly corresponded to the sum of V1 and V2 agonists effects. In IMCD, dDAVP (10 nM) alone reproduced the calcium response to AVP (delta[Ca2+]i = 243 +/- 34 nM, n = 6, and 248 +/- 27 nM, n = 8, with dDAVP and AVP, respectively). Furthermore, in the same experiments V1 and V2 maximal effects were not additive ([Phe2,Orn8]VT = 154 +/- 21 nM, n = 6; dDAVP + [Phe2,Orn8]VT = 233 +/- 23 nM, n = 9). As AVP, dDAVP released intracellular calcium (delta[Ca2+]i in calcium-free medium = 182 +/- 24 nM, n = 8, vs. 182 +/- 14 nM, n = 6 with 10 nM dDAVP and AVP, respectively). Neither 8-(4-chlorophenyl-thio)-adenosine 3',5'-cyclic monophosphate nor forskolin modified [Ca2+]i. A cross-reaction of dDAVP with an oxytocin (OT) receptor can be excluded since 1) the specific OT agonist [Thr4,Gly7]OT (10 nM) increased only slightly [Ca2+]i (delta-[Ca2+]i = 20 +/- 5 nM, n = 11); 2) the dDAVP response was not altered by the specific OT antagonist [1-(beta-mercapto-beta,beta-cyclopentamethylene propionic acid),2-(O-methyl)tyrosine,4-threonine, 8-ornithine,9-tyrosylamide]vasotocin [d(CH2)5(1),O-Me-Tyr2,Thr4,Tyr-NH2(9)]OVT; 3) it was insensitive to V1 antagonists but was totally blocked by the V1/V2 antagonist [d(CH2)5(1),O-Et-Tyr2,Val4]AVP ([delta[Ca2+]i = 18 +/- 4 nM, n = 6). These results indicate that in IMCD AVP increases [Ca2+]i via both V1 and V2 receptors. [Ca2+]i variations due to V2 receptors involve a mechanism independent of adenylate cyclase and coupled to the same intracellular calcium pool as V1 and V2 receptors.
Insulin (Ins) decreases Na+ delivery in the final urine. To determine whether the loop of Henle participates in this reduction, the effects of Ins were tested on cortical (CTAL) and medullary thick ascending limbs (MTAL) of the mouse nephron, microperfused in vitro. In the MTAL, Ins increased the transepithelial potential difference (Vt) and the Na+ and Cl- net reabsorption fluxes (JNa and JCl, respectively) in a dose-dependent manner, the threshold being below 10(-9) M. At 10(-7) M, Ins reversibly increased JNa and JCl, leaving Mg2+ and Ca2+ fluxes (JMg and JCa, respectively) close to zero. In the CTAL, 10(-7) M Ins reversibly increased Vt, JNa, JCl, JMg, and JCa. In CTAL segments perfused under asymmetrical conditions, with a bath-to-lumen-directed NaCl gradient (lumen 50 mM NaCl, bath 150 mM NaCl), addition of 10(-7) M Ins to the bath resulted in a large increase in JMg and JCa. Thus the responses of CTAL and MTAL to Ins are in all ways similar to those already reported for the adenosine 3',5'-cyclic monophosphate (cAMP)-generating hormones acting on these nephron segments. When 10(-10) M arginine vasopressin (AVP) and 10(-7) M Ins were used in combination, previous addition of one hormone to the bath potentiated the response to the second hormone. In cAMP accumulation experiments, performed in the presence of a phosphodiesterase inhibitor, the amounts of cAMP formed with 10(-7) M Ins and 10(-10) M AVP (which elicit maximal physiological responses in these segments) were in the same range.(ABSTRACT TRUNCATED AT 250 WORDS)
Isolated segments of rat cortical (cTAL) and medullary (mTAL) thick ascending limbs were microperfused and the transepithelial net fluxes (JX) were determined by measuring the composition of the collected fluid with an electron microprobe. When perfused with symmetrical solutions both segments showed similar JNa and JCl and lumen-positive transepithelial voltage (Vte = 7-8 mV). JMg, JCa and JK were not significantly different from zero. When perfused with asymmetrical solutions (lumen 50 mM, bath 150 mM NaCl), the mean Vte were 23 mV and 17 mV in the cTAL and mTAL respectively; this rise was accompanied by significant increases in JMg and JCa in the cTAL, but not in the mTAL, and a marked increase in JK in both segments. It is concluded that, in the rat, divalent cations can be reabsorbed in the cTAL, and K+ can be reabsorbed in the cTAL and mTAL. The transport is voltage-dependent. The mTAL can reabsorb neither Mg2+ nor Ca2+, whatever Vte.
The effect of extracellular calcium ([Ca2+]e) on cytosolic calcium ([Ca2+]i) was investigated in thick ascending limbs and collecting ducts from the rat kidney, using the fluorescent dye fura-2. In cortical collecting ducts, basolateral but not apical changes in [Ca2+]e were associated with parallel changes in [Ca2+]i. Basal [Ca2+]i was hardly modified by nifedipine and verapamil but was decreased by 60% by basolateral La3+. Increasing peritubular [Ca2+]e triggered Ca2+ release from intracellular stores. This effect was not reproduced by agonists of the renal Ca2+-receptor RaKCaR, e.g., Ba2+, Mg2+, Gd3+, and neomycin, but was reproduced by Ni2+. Ni2+-induced mobilization of intracellular Ca2+ was larger in the inner medullary collecting duct, a segment which poorly responds to increasing [Ca2+]e. In the cortical thick ascending limb, removing basolateral Ca2+ hardly altered [Ca2+]i but increasing [Ca2+]e or adding Ba2+, Mg2+, Gd3+ and neomycin released intracellular calcium. These data demonstrate that (1) basolateral influx of calcium occurs in cortical collecting ducts, under basal conditions; (2) this influx occurs through nonvoltage gated channels, permeable to Ba2+, insensitive to verapamil and nifedipine, and blocked by La3+; (3) increasing [Ca2+]e stimulates the influx and triggers intracellular calcium release, independently of the phospholipase C-coupled receptor RaKCaR; (4) RaKCaR is functionally expressed in thick ascending limbs; (5) another membrane receptor, sensitive to Ni2+ but not to Ca2+ is present in the collecting duct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.