Akkermansia muciniphila is a mucin-degrading bacterium found in the gut of most humans and is considered a “next-generation probiotic.” However, knowledge of the genomic and physiological diversity of human-associated Akkermansia sp. strains is limited. Here, we reconstructed 35 metagenome-assembled genomes and combined them with 40 publicly available genomes for comparative genomic analysis. We identified at least four species-level phylogroups (AmI to AmIV), with distinct functional potentials. Most notably, we identified genes for cobalamin (vitamin B12) biosynthesis within the AmII and AmIII phylogroups. To verify these predictions, 10 Akkermansia strains were isolated from adults and screened for vitamin B12 biosynthesis genes via PCR. Two AmII strains were positive for the presence of cobalamin biosynthesis genes, while all 9 AmI strains tested were negative. To demonstrate vitamin B12 biosynthesis, we measured the production of acetate, succinate, and propionate in the presence and absence of vitamin supplementation in representative strains of the AmI and AmII phylogroups, since cobalamin is an essential cofactor in propionate metabolism. Results showed that the AmII strain produced acetate and propionate in the absence of supplementation, which is indicative of vitamin B12 biosynthesis. In contrast, acetate and succinate were the main fermentation products for the AmI strains when vitamin B12 was not supplied in the culture medium. Lastly, two bioassays were used to confirm vitamin B12 production by the AmII phylogroup. This novel physiological trait of human-associated Akkermansia strains may affect how these bacteria interact with the human host and other members of the human gut microbiome. IMPORTANCE There is significant interest in the therapeutic and probiotic potential of the common gut bacterium Akkermansia muciniphila. However, knowledge of both the genomic and physiological diversity of this bacterial lineage is limited. Using a combination of genomic, molecular biological, and traditional microbiological approaches, we identified at least four species-level phylogroups with differing functional potentials that affect how these bacteria interact with both their human host and other members of the human gut microbiome. Specifically, we identified and isolated Akkermansia strains that were able to synthesize vitamin B12. The ability to synthesize this important cofactor broadens the physiological capabilities of human-associated Akkermansia strains, fundamentally altering our understanding of how this important bacterial lineage may affect human health.
Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk and provide several benefits to developing infants, including the recruitment of beneficial bacteria to the human gut. Akkermansia strains are largely considered beneficial bacteria and have been detected in colostrum, breast milk, and young infants. A. muciniphila Muc T belonging to the AmI phylogroup contributes to the HMO deconstruction capacity of the infant. Here, using phylogenomics, we examined the genomic capacities of four Akkermansia phylogroups to deconstruct HMOs.
Bacterial leaf streak of corn (Zea mays) recently reached epidemic levels in three corn-growing states, and has been detected in another six states in the central United States. Xanthomonas vasicola was identified as the causal agent of this disease. A multilocus sequence alignment of six housekeeping genes and comparison of average nucleotide identity from draft genome sequence were used to confirm phylogenetic relationships and classification of this bacteria relative to other X. vasicola strains. X. vasicola isolates from Nebraska and South Africa were highly virulent on corn and sugarcane and less virulent on sorghum but caused water-soaking symptoms that are typical of X. vasicola infection on the leaves of all three hosts. Based on host range and phylogenetic comparison, we propose the taxonomic designation of this organism to X. vasicola pv. vasculorum ( Cobb 1894 ) comb. nov. Polymerase chain reaction-based diagnostic assays were developed that distinguish X. vasicola pv. vasculorum and X. vasicola pv. holcicola from each other and from other Xanthomonas spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.