Wound healing (WH) and cancer seem to share common cellular and molecular processes that could work in a tight balance to maintain tissue homeostasis or, when unregulated, drive tumor progression. The “Cancer Hallmarks” comprise crucial biological properties that mediate the advancement of the disease and affect patient prognosis. These hallmarks have been proposed to overlap with essential features of the WH process. However, common hallmarks and proteins actively participating in both processes have yet to be described. In this work we identify 21 WH proteins strongly linked with solid tumors by integrated TCGA Pan-Cancer and multi-omics analyses. These proteins were associated with eight of the ten described cancer hallmarks, especially avoiding immune destruction. These results show that WH and cancer's common proteins are involved in the microenvironment modification of solid tissues and immune system regulation. This set of proteins, between WH and cancer, could represent key targets for developing therapies.
Background: It is imperative to identify drugs that allow treating symptoms of severe COVID-19. Respiratory failure is the main cause of death in severe COVID-19 patients, and the host inflammatory response at the lungs remains poorly understood.Methods: Therefore, we retrieved data from post-mortem lungs from COVID-19 patients and performed in-depth in silico analyses of single-nucleus RNA sequencing data, inflammatory protein interactome network, and shortest pathways to physiological phenotypes to reveal potential therapeutic targets and drugs in advanced-stage COVID-19 clinical trials.Results: Herein, we analyzed transcriptomics data of 719 inflammatory response genes across 19 cell types (116,313 nuclei) from lung autopsies. The functional enrichment analysis of the 233 significantly expressed genes showed that the most relevant biological annotations were inflammatory response, innate immune response, cytokine production, interferon production, macrophage activation, blood coagulation, NLRP3 inflammasome complex, and the TLR, JAK-STAT, NF-κB, TNF, oncostatin M signaling pathways. Subsequently, we identified 34 essential inflammatory proteins with both high-confidence protein interactions and shortest pathways to inflammation, cell death, glycolysis, and angiogenesis.Conclusion: We propose three small molecules (baricitinib, eritoran, and montelukast) that can be considered for treating severe COVID-19 symptoms after being thoroughly evaluated in COVID-19 clinical trials.
There is pressing urgency to identify drugs that allow treating COVID-19 patients effectively. Respiratory failure is the leading cause of death in patients with severe COVID-19, and the host inflammatory response at the lungs remains poorly understood. Therefore, we retrieved data from postmortem lungs from COVID-19 patients and performed in-depth in silico analyses of single-nucleus RNA sequencing data, inflammatory protein interactome network, functional enrichment, and shortest pathways to cancer hallmark phenotypes to reveal potential therapeutic targets and drugs in advanced-stage COVID-19 clinical trials. Herein, we analyzed transcriptomics data of 719 inflammatory response genes across 19 cell types (116,313 nuclei) from lung autopsies. The functional enrichment analysis of the 233 significantly expressed genes showed that the most relevant biological annotations were: inflammatory response, innate immune response, cytokine production, interferon production, macrophage activation, thymic stromal lymphopoietin, blood coagulation, IL-1 and megakaryocytes in obesity, NLRP3 inflammasome complex, and the TLR, JAK-STAT, NF-κB, TNF, oncostatin M, AGE-RAGE signaling pathways. Subsequently, we identified 34 essential inflammatory proteins with both high-confidence protein interactions and shortest pathways to inflammation, cell death, glycolysis, and angiogenesis. Lastly, we propose five small molecules involved in advanced-stage COVID-19 clinical trials: baricitinib, pacritinib, and ruxolitinib are tyrosine-protein kinase JAK2 inhibitors, losmapimod is a MAP kinase p38 alpha inhibitor, and eritoran is a TLR4/MD-2 antagonist. After being thoroughly analyzed in COVID-19 clinical trials, these drugs can be considered for treating severe COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.