The four copper nanoparticles (CuNPs) with the size of 25, 50, 78 and 100 nm and one type of micron-sized particles (MPs) (~500 nm) were exposed to two mammalian (H4IIE and HepG2) and two piscine (PLHC-1 and RTH-149) cell lines to test the species-specific toxicities of CuNPs. The results showed that the morphologies, ion release and size of the particles all played an important role when investigating the toxicity. Furthermore, the authors found that the particle forms of CuNPs in suspensions highly contribute to the toxicity in all exposed cell lines whereas copper ions (Cu(2+)) only caused significant responses in mammalian cell lines, indicating the species-specific toxicity of CuNPs. This study revealed that the morphologies, ion release rate of NPs as well as the species-specific vulnerabilities of cells should all be considered when explaining and extrapolating toxicity test results among particles and among species.
• ZnONPs at non-toxic concentrations increased the toxicity of CuNPs in vitro.• ZnONPs of larger size provoked a stronger synergistic effect with CuNPs.• The synergistic effect was attributed to the particle fraction of ZnONPs. Here we examined whether the addition of a non-toxic concentration (6.25 μg/mL) of zinc oxide nanoparticles (ZnONPs: 19, 35 and 57 nm, respectively) modulates the cytotoxicity of copper nanoparticles (CuNPs, 63 nm in size) in the human hepatoma cell line HepG2. The cytotoxic effect of CuNPs on HepG2 cells was markedly enhanced by the ZnONPs, the largest ZnONPs causing the highest increase in toxicity. However, CuNPs cytotoxicity was not affected by co-incubation with medium containing only zinc ions, indicating the increase in toxicity might be attributed to the particle form of ZnONPs. Transmission electron microscopy (TEM) revealed the presence of CuNPs and ZnONPs inside the cells co-exposed to both types of NP and outflow of cytoplasm through the damaged cell membrane. Inductively coupled plasma mass spectrometry (ICP-MS) determined an increase in the concentration of zinc and a decrease in that of copper in co-exposed cells. On the basis of these results, we propose that accumulation of large numbers of ZnONPs in the cells alters cellular membranes and the cytotoxicity of CuNPs is increased.
a b s t r a c t a r t i c l e i n f o
Navas (2013) Comparative cytotoxicity induced by bulk and nanoparticulated ZnO in the fish and human hepatoma cell lines PLHC-1 and Hep G2, Nanotoxicology, 7:5, 935-952, DOI: 10.3109/17435390.2012
AbstractThe increasing presence of ZnO nanoparticles (NPs) in consumer products may be having a dramatic impact in aquatic environments. The evaluation of ZnO NP toxicity represents a great challenge. This study aimed at evaluating the cytotoxic effect of micro-and nanosized ZnO in a fish and a mammalian hepatoma cell line. A detailed characterisation of the particles in exposure media showed that ZnO NPs formed large aggregates. ZnO cytotoxicity was evaluated with a battery of in vitro assays including LUCS, a new approach based on DNA alteration measurements. In fish cells, ZnO NP aggregates contributed substantially to the cytotoxic effects whereas toxicity in the human cells appeared to be mainly produced by the dissolved fraction. ROS production did not contribute to the observed cytotoxicity. This work also showed that measuring concentrations of NPs is essential to understand the mechanisms underlying their toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.