Development of efficient catalysts for the direct hydrogenation of CO2 to methanol is essential for the valorization of this abundant feedstock. Here we show that a silica-supported Cu/Mo2CTx (MXene) catalyst achieves a higher intrinsic methanol formation rate per mass Cu than the reference Cu/SiO2 catalyst with a similar Cu loading. The Cu/Mo2CTx interface can be engineered owing to the higher affinity of metallic Cu for the partially reduced MXene surface (in preference to the SiO2 surface) and the mobility of Cu under H2 at 500 C.Increasing the reduction time, the Cu/Mo2CTx interface becomes more Lewis acidic due to the higher amount of Cu + sites dispersed onto the reduced Mo2CTx and this correlates with an 2 increased rate of CO2 hydrogenation to methanol. The critical role of the interface between Cu and Mo2CTx is further highlighted by DFT calculations that identify formate and methoxy species as stable reaction intermediates.
In this work, we study the ligand exchange process between alkanes and a series of silica supported metal alkylidenes, which may occur by different pathways: C-H addition, σ-bond metathesis, and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.