, "Comparing diffuse optical tomography and functional magnetic resonance imaging signals during a cognitive task: pilot study," Neurophoton. 4(1), 015003 (2017), doi: 10.1117/1.NPh.4.1.015003. Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy-and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp-brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity.
This work investigates the transfer of motor learning from the eye to the hand and its neural correlates by using functional magnetic resonance imaging (fMRI) and a sensorimotor task consisting of the continuous tracking of a virtual target. In pretraining evaluation, all the participants (experimental and control group) performed the tracking task inside an MRI scanner using their right hand and a joystick. After which, the experimental group practiced an eye‐controlled version of the task for 5 days using an eye tracking system outside the MRI environment. Post‐training evaluation was done 1 week after the first scanning session, where all the participants were scanned again while repeating the manual pretraining task. Behavioral results show that the training in the eye‐controlled task produced a better performance not only in the eye‐controlled modality (motor learning) but also in the hand‐controlled modality (motor transfer). Neural results indicate that eye to hand motor transfer is supported by the motor cortex, the basal ganglia and the cerebellum, which is consistent with previous research focused on other effectors. These results may be of interest in neurorehabilitation to activate the motor systems and help in the recovery of motor functions in stroke or movement disorder patients.
Deep brain stimulation is an elective surgical intervention that improves the function and quality of life in children with dystonia and other movement disorders. Both basal ganglia and thalamic nuclei have been found to be relevant targets for treatment of dystonia in children, including the ventral intermediate nucleus of the thalamus, in which stimulation can control dystonic spasms. Electrophysiological confirmation of correct electrode location within the ventralis intermediate nucleus is thus important for the success of the surgical outcome. The present work shows the evoked potentials response during contralateral median-nerve stimulation at the wrist at low frequency (9 Hz) provides physiological evidence of the electrode’s localization within the thalamus. We show the correlation between evoked potentials and magnetic resonance imaging (MRI) and computed tomography (CT) in 14 children undergoing implantation of deep brain stimulation electrodes for secondary dystonia. High fidelity and reproducibility of our results provides a new approach to ensure the electrode localization in the thalamic subnuclei.
HighlightsThe study of the relationship between function and structure of the brain is interesting in multiple sclerosis patients.Different relationship between amplitude of low frequency fluctuations (ALFF) and gray matter volume has been detected.This difference may be associated with the presence of white matter lesions involving specific tracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.