Photosynthetic microorganisms are considered excellent feedstock for biofuel production in developing biomass production technologies. A study was conducted to evaluate ethanol production with the sequential enzymatic saccharification and fermentation of Arthrospira platensis (Spirulina) biomass with the metabolically engineered Escherichia coli strain MS04. A. platensis was cultivated semicontinuously in an open raceway pond, and the carbohydrate content was determined to be as high as 40%. The enzymatic saccharification was designed to release the maximum amount of glucose. After 40 h of enzymatic saccharification, 27 g L−1 of monosaccharides was obtained. These slurries were fermented with ethanologenic bacteria, achieving 12.7 g L−1 ethanol after 9 h of fermentation, which corresponds to 92% conversion yield of the glucose content in the hydrolysate, 0.13 g of ethanol per 1 g of Spirulina biomass and a volumetric productivity of 1.4 g of ethanol L−1 h−1. Therefore, we conclude that it is possible, in a short time, to obtain a high ethanol yield corresponding to 160 L per ton of dry biomass with a high productivity.
The production of biofuels, such as bioethanol from lignocellulosic biomass, is an important task within the sustainable energy concept. Understanding the metabolism of ethanologenic microorganisms for the consumption of sugar mixtures contained in lignocellulosic hydrolysates could allow the improvement of the fermentation process. In this study, the ethanologenic strain Escherichia coli MS04 was used to ferment hydrolysates from five different lignocellulosic agroindustrial wastes, which contained different glucose and xylose concentrations. The volumetric rates of glucose and xylose consumption and ethanol production depend on the initial concentration of glucose and xylose, concentrations of inhibitors, and the positive effect of acetate in the fermentation to ethanol. Ethanol yields above 80% and productivities up to 1.85 gEtOH/Lh were obtained. Furthermore, in all evaluations, a simultaneous co-consumption of glucose and xylose was observed. The effect of deleting the xyIR regulator was studied, concluding that it plays an important role in the metabolism of monosaccharides and in xylose consumption. Moreover, the importance of acetate was confirmed for the ethanologenic strain, showing the positive effect of acetate on the co-consumption rates of glucose and xylose in cultivation media and hydrolysates containing sugar mixtures.
Teak wood residues were subjected to thermochemical pretreatment, enzymatic saccharification, and detoxification to obtain syrups with a high concentration of fermentable sugars for ethanol production with the ethanologenic Escherichia coli strain MS04. Teak is a hardwood, and thus a robust deconstructive pretreatment was applied followed by enzymatic saccharification. The resulting syrup contained 60 g L−1 glucose, 18 g L−1 xylose, 6 g L−1 acetate, less than 0.1 g L−1 of total furans, and 12 g L−1 of soluble phenolic compounds (SPC). This concentration of SPC is toxic to E. coli, and thus two detoxification strategies were assayed: 1) treatment with Coriolopsis gallica laccase followed by addition of activated carbon and 2) overliming with Ca(OH)2. These reduced the phenolic compounds by 40 and 76%, respectively. The detoxified syrups were centrifuged and fermented with E. coli MS04. Cultivation with the over-limed hydrolysate showed a 60% higher volumetric productivity (0.45 gETOH L−1 h−1). The bioethanol/sugars yield was over 90% in both strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.