Objective. To determine the optimal cutoff of the homeostasis model assessment-insulin resistance (HOMA-IR) for diagnosis of the metabolic syndrome (MetS) in adolescents and examine whether insulin resistance (IR), determined by this method, was related to genetic, biological, and environmental factors. Methods. In 667 adolescents (16.8 ± 0.3 y), BMI, waist circumference, glucose, insulin, adiponectin, diet, and physical activity were measured. Fat and fat-free mass were assessed by dual-energy X-ray absorptiometry. Family history of type 2 diabetes (FHDM) was reported. We determined the optimal cutoff of HOMA-IR to diagnose MetS (IDF criteria) using ROC analysis. IR was defined as HOMA-IR values above the cutoff. We tested the influence of genetic, biological, and environmental factors on IR using logistic regression analyses. Results. Of the participants, 16% were obese and 9.4 % met criteria for MetS. The optimal cutoff for MetS diagnosis was a HOMA-IR value of 2.6. Based on this value, 16.3% of participants had IR. Adolescents with IR had a significantly higher prevalence of obesity, abdominal obesity, fasting hyperglycemia, and MetS compared to those who were not IR. FHDM, sarcopenia, obesity, and low adiponectin significantly increased the risk of IR. Conclusions. In adolescents, HOMA-IR ≥ 2.6 was associated with greater cardiometabolic risk.
Background Poor motor skills have been consistently linked with a higher body weight in childhood, but the causal direction of this association is not fully understood. This study investigated the temporal ordering between children’s motor skills and weight status at 5 and 10 years. Methods Participants were 668 children (54% male) who were studied from infancy as part of an iron-deficiency anemia preventive trial and follow-up study in Santiago, Chile. All were healthy, full term, and weighing 3 kg or more at birth. Cross-lagged panel modeling was conducted to understand the temporal precedence between children’s weight status and motor proficiency. Analyses also examined differences in gross and fine motor skills among healthy weight, overweight, and obese children. Results A higher BMI at 5 years contributed to declines in motor proficiency from 5 to 10 years. There was no support for the reverse; that is, poor motor skills at 5 years did not predict increases in relative weight from 5 to 10 years. Obesity at 5 years also predicted declines in motor proficiency. When compared to normal weight children, obese children had significantly poorer total and gross motor skills at both 5 and 10 years. Overweight children had poorer total and gross motor skills at 10 years only. The differences in total and gross motor skills among normal-weight, overweight, and obese children appear to increase with age. There were small differences in fine motor skill between obese and non-obese children at 5 years only. Conclusions Obesity preceded declines in motor skills and not the reverse. Study findings suggest that early childhood obesity intervention efforts might help prevent declines in motor proficiency which, in turn, may positively impact children’s physical activity and overall fitness levels.
Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI) achieved 2–18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689 controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.
ObjectiveTo analyse the prevalence of cardiovascular risk factors in healthy adolescents of low to middle socio-economic status and to study the influence of anthropometric, biological and lifestyle factors on the risk of metabolic syndrome (MetS).DesignCross-sectional study. BMI, waist circumference, blood pressure, fat and lean mass (by dual-energy X-ray absorptiometry), TAG, HDL-cholesterol, glucose, insulin, homeostatic model assessment–insulin resistance index (HOMA-IR), food intake and physical activity were measured. Cardiovascular risk factors were defined using the International Diabetes Federation criteria and insulin resistance using HOMA-IR ≥2·6. Bivariate and multivariate regressions examined the associations between MetS and anthropometric, biological and lifestyle factors.SettingObservational cohort study including Chilean adolescents, who were part of a follow-up study beginning in infancy.SubjectsAdolescents aged 16–17 years (n 667).ResultsIn the sample, 16·2 % had obesity and 9·5 % had MetS. Low HDL-cholesterol (69·9 %), abdominal obesity (33·3 %) and fasting hyperglycaemia (8·7 %) were the most prevalent cardiovascular risk factors. In males, obesity (OR=3·7; 95 % CI 1·2, 10·8), insulin resistance (OR=3·0; 95 % CI 1·1, 8·2), physical inactivity (OR=2·9; 95 % CI 1·1, 7·7) and sarcopenia (OR=21·2; 95 % CI 4·2, 107·5) significantly increased the risk of MetS. In females, insulin resistance (OR=4·9; 95 % CI 1·9, 12·6) and sarcopenia (OR=3·6; 95 % CI 1·1, 11·9) were significantly associated with MetS.ConclusionsHigh prevalences of obesity, abdominal obesity, dyslipidaemia, fasting hyperglycaemia and MetS were found in healthy adolescents. In both sexes, sarcopenia and insulin resistance were important risk factors of MetS. Promotion of active lifestyles at the school level and regulation of the sale of energy-dense foods are needed.
In a large sample of healthy full-term infants, developmental scores obtained using the Bayley Scales of Infant Development at 12 months increased with gestational age (37-41 weeks). There is increasing evidence that birth at 39 to 41 weeks provides developmental advantages compared with birth at 37 to 38 weeks. Because cesarean deliveries and early-term inductions have increased to 40% of all births, consideration of ongoing brain development during the full-term period is an important medical and policy issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.