Numerical modeling simulations and the use of high-performance computing are fundamental for detailed safety analysis, control and operation of a nuclear reactor, allowing the study and analysis of problems related with thermalhydraulics, neutronic and the dynamic of fluids which are involved in these systems. In this work we introduce the bases for the implementation of the smoothed particle hydrodynamics (SPH) approach to analyze heat transfer in a nuclear reactor core. Heat transfer by means of convection is of great importance in many engineering applications and especially in the analysis of heat transfer in nuclear reactors. As a first approach, the natural convection in the gap (space that exists between the fuel rod and the cladding) can be analyzed helping to reduce uncertainty in such calculations that usually relies on empirical correlations while using other numerical tools. The numerical method developed in this work was validated while comparing the results obtained in previous numerical simulations and experimental data reported in the literature showing that our implementation is suitable for the study of heat transfer in nuclear reactors. Numerical simulations were done with the DualSPHysics open source code that allows to perform parallel calculations using different number of cores. The current implementation is a version written in CUDA (Compute Unified Device Architecture) that allows also the use of GPU processors (Graphics Processor Unit) to accelerate the calculations in parallel using a large number of cores contained in the GPU. This makes possible to analyze large systems using a reasonable computer time. The obtained results verified and validated our method and allowed us to have a strong solver for future applications of heat transfer in nuclear reactors fuel inside the reactor cores.
v i s i t w w w . i n d e r s c i e n c e . c o m
Scope of the Journal
Subject coverage:The following list, which is not exhaustive, describes topics appropriate to IJNEST:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.