Microorganisms participate in a variety of geologic processes that alter the chemical and physical properties of their environment. Understanding the geophysical signatures of microbial activity in the environment has resulted in the development of a new sub-discipline in geophysics called ''biogeophysics''. This review focuses primarily on literature pertaining to biogeophysical signatures of sites contaminated by light non-aqueous phase liquids (LNAPL), as these sites provide ideal laboratories for investigating microbialgeophysical relationships. We discuss the spatial distribution and partitioning of LNAPL into different phases because the physical, chemical, and biological alteration of LNAPL and the subsequent impact to the contaminated environment is in large part due to its distribution. We examine the geophysical responses at contaminated sites over short time frames of weeks to several years when the alteration of the LNAPL by microbial activity has not occurred to a significant extent, and over the long-term of several years to decades, when significant microbial degradation of the LNAPL has occurred. A review of the literature suggests that microbial processes profoundly alter the contaminated environment causing marked changes in the petrophysical properties, mineralogy, solute concentration of pore fluids, and temperature. A variety of geophysical techniques such as electrical resistivity, induced polarization, electromagnetic induction, ground penetrating radar, and self potential are capable of defining the contaminated zones because of the new physical properties imparted by microbial processes. The changes in the physical properties of the contaminated environment vary spatially because microbial processes are controlled by the spatial distribution of the contaminant. Geophysical studies must consider the spatial variations in the physical properties during survey design, data analysis, and interpretation. Geophysical data interpretation from surveys conducted at LNAPL-contaminated sites without a microbial and geochemical context may lead to ambiguous conclusions.
We have derived a set of new relationships describing polarization parameters in porous materials with disseminated particles made of a semiconductor, such as pyrite or magnetite. We have compared various predictions of this model to a broad set of experimental data. The chargeability was found to be controlled only by the volume fraction of metallic particles in agreement with the experimental data. The relaxation time, defined from the peak frequency of the phase, was observed to be proportional to the square of the size of the metallic particles and was independent of the salinity of the pore water solution. The relationship between the peak frequency and the grain size could be used to determine the diffusion coefficient of the [Formula: see text]- and [Formula: see text]-charge carriers in the semiconductor. This diffusion coefficient was consistent with the mobility of the charge carriers derived from theoretical considerations or electric-conductivity measurements. The resistivity of a mixture of a porous matrix characterized by a low-chargeability and dispersed semiconductors does not depend on the content of metallic grains, as long as the grains are below a percolation threshold (< 22 vol.%). Various experiments were performed using magnetite and pyrite at different grain sizes, weight fractions, and with/without porous materials (i.e., suspended in agar gel). These data were used to test some additional aspects of the model. We found excellent agreement between the model predictions and these experimental data.
We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light nonaqueous-phase liquid (LNAPL). The bulk conductivity was measured using in-situ vertical resistivity probes; the most probable number method was used to characterize the spatial distribution of aerobic heterotrophic and oil-degrading microbial populations. The purpose of this study was to assess if high conductivity observed at aged LNAPLimpacted sites may be related to microbial degradation of LNAPL. The results show higher bulk conductivity coincident with LNAPL-impacted zones, in contrast to geoelectrical models that predict lower conductivity in such zones. The highest bulk conductivity was observed to be associated with zones impacted by residual and free LNAPL. Data from bacteria enumeration from sediments close to the resistivity probes show that oil-degrading microbes make up a larger percentage (5-55%) of the heterotrophic microbial community at depths coincident with the higher conductivity compared to ∼5% at the uncontaminated location. The coincidence of a higher percentage of oil-degrading microbial populations in zones of higher bulk conductivity suggests that the higher conductivity in these zones may result from increased fluid conductivity related to microbial degradation of LNAPL, consistent with geochemical studies that suggest that intrinsic biodegradation is occurring at the site. The findings from this study point to the fact that biogeochemical processes accompanying biodegradation of contaminants can potentially alter geoelectrical properties of the subsurface impacted media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.