Platelets promote metastasis, however, their role in tumor growth remains controversial. Here, we investigated the effect of platelet interactions with colorectal tumor cells. Platelets extravasated into the tumor microenvironment and interacted with tumor cells in a cadherin-6–dependent manner. The interaction induced platelet spreading, release of their granule content, and the generation of three types of microparticles (iMP) that expressed platelet markers, tumor markers, or both. The presence of iMPs was confirmed in colorectal cancer tissue specimens. Platelets significantly reduced tumor growth and increased intratumoral macrophages. This was mediated by iMP recruitment of macrophages via the chemoattractants RANTES, MIF, CCL2, and CXCL12 and activation of their tumor cell killing capacity through IFNγ and IL4, which led to cell-cycle arrest of tumor cells in a p21-dependent manner. In contrast, in the bloodstream, iMPs activated endothelial cells and platelets and induced epithelial-to-mesenchymal transition of tumor cells, promoting metastasis. Altogether, these results indicate that depending on the environment, local or bloodstream, the consequences of the interactions between platelets and a tumor may promote or prevent cancer progression. Significance: Tumor cell interaction with platelets produces chimeric extracellular vesicles that suppress primary tumor growth by activating tumor-eliminating macrophages, while promoting metastasis through EMT and endothelial activation.
The contribution of NETs (neutrophil extracellular traps) to thrombus formation has been intensively documented in both arterial and venous thrombosis in mice. We previously demonstrated that adenosine triphosphate (ATP)–activated neutrophils play a key role in initiating the tissue factor–dependent activation of the coagulation cascade, leading to thrombus formation following laser-induced injury. Here, we investigated the contribution of NETs to thrombus formation in a laser-induced injury model. In vivo, treatment of mice with DNase-I significantly inhibited the accumulation of polymorphonuclear neutrophils at the site of injury, neutrophil elastase secretion, and platelet thrombus formation within seconds following injury. Surprisingly, electron microscopy of the thrombus revealed that neutrophils present at the site of laser-induced injury did not form NETs. In vitro, ATP, the main neutrophil agonist present at the site of laser-induced injury, induced the overexpression of PAD4 and CitH3 but not NETosis. However, compared to no treatment, the addition of DNase-I was sufficient to cleave ATP and adenosine diphosphate (ADP) in adenosine. Human and mouse platelet aggregation by ADP and neutrophil activation by ATP were also significantly reduced in the presence of DNase-I. We conclude that following laser-induced injury, neutrophils but not NETs are involved in thrombus formation. Treatment with DNase-I induces the hydrolysis of ATP and ADP, leading to the generation of adenosine and the inhibition of thrombus formation in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.