The prevalence of nonalcoholic fatty liver disease and the consequent burden of metabolic syndrome have increased in recent years. Although the pathogenesis of nonalcoholic fatty liver disease is not completely understood, it is thought to be the hepatic manifestation of the dysregulation of insulin-dependent pathways leading to insulin resistance and adipose tissue accumulation in the liver. Recently, the gut-liver axis has been proposed as a key player in the pathogenesis of NAFLD, as the passage of bacteria-derived products into the portal circulation could lead to a trigger of innate immunity, which in turn leads to liver inflammation. Additionally, higher prevalence of intestinal dysbiosis, larger production of endogenous ethanol, and higher prevalence of increased intestinal permeability and bacterial translocation were found in patients with liver injury. In this review, we describe the role of intestinal dysbiosis in the activation of the inflammatory cascade in NAFLD.
Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders.
While there are many obstacles to immune destruction of autologous tumors, there is mounting evidence that tumor antigen recognition does occur. Unfortunately, immune recognition rarely controls clinically significant tumors. Even the most effective immune response will fail if tumors fail to express target antigens. Importantly, reduced tumor antigen expression often results from changes in gene regulation rather than irrevocable loss of genetic information. Such perturbations are often reversible by specific compounds or biological mediators, prompting a search for agents with improved antigen-enhancing properties. Some recent findings have suggested that certain conventional chemotherapeutic agents may have beneficial properties for cancer treatment beyond their direct cytotoxicities against tumor cells. Accordingly, we screened an important subset of these agents, topoisomerase inhibitors, for their effects on antigen levels in tumor cells. Our analyses demonstrate up-regulation of antigen expression in a variety of melanoma cell lines and gliomas in response to nanomolar levels of certain specific topoisomerase inhibitors. To demonstrate the ability of CD8+T cells to recognize tumors, we assayed cytokine secretion in T cells transfected with T cell receptors directed against Melan-A/MART-1 antigen. Three days of daunorubicin treatment resulted in enhanced antigen expression by tumor cells, in turn inducing co-cultured antigen-specific T cells to secrete Interluekin-2 and Interferon-γ. These results demonstrate that specific topoisomerase inhibitors can augment melanoma antigen production, suggesting that a combination of chemotherapy and immunotherapy may be of potential value in the treatment of otherwise insensitive cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.