Uveal melanoma (UM) is the most common cancer of the eye in adults. Many UM patients develop metastases for which no curative treatment has been identified. Novel therapeutic approaches are therefore urgently needed. UM is characterized by mutations in the genes GNAQ and GNA11 which activate the PKC pathway, leading to the use of PKC inhibitors as a rational strategy to treat UM tumors. Encouraging clinical activity has been noted in UM patients treated with PKC inhibitors. However, it is likely that curative treatment regimens will require a combination of targeted therapeutic agents. Employing a large panel of UM patient-derived xenograft models (PDXs), several PKC inhibitor-based combinations were tested in vivo using the PKC inhibitor AEB071. The most promising approaches were further investigated in vitro using our unique panel of UM cell lines. When combined with AEB071, the two agents CGM097 (p53-MDM2 inhibitor) and RAD001 (mTORC1 inhibitor) demonstrated greater activity than single agents, with tumor regression observed in several UM PDXs. Follow-up studies in UM cell lines on these two drug associations confirmed their combination activity and ability to induce cell death. While no effective treatment currently exists for metastatic uveal melanoma, we have discovered using our unique panel of preclinical models that combinations between PKC/mTOR inhibitors and PKC/p53-MDM2 inhibitors are two novel and very effective therapeutic approaches for this disease. Together, our study reveals that combining PKC and p53-MDM2 or mTORC1 inhibitors may provide significant clinical benefit for UM patients.
Uveal melanoma (UM) is the most frequent malignant ocular tumor in adults. While the primary tumor is efficiently treated by surgery and/or radiotherapy, about one third of UM patients develop metastases, for which no effective treatment is currently available. The PKC, MAPK and PI3K/AKT/mTOR signaling cascades have been shown to be associated with tumor growth. However, none of the compounds against those pathways results in tumor regression when used as single agents. To identify more effective therapeutic strategies for UM patients, we performed a combination screen using seven targeted agents inhibiting PKC, MEK, AKT, PI3K and mTOR in a panel of ten UM cell lines, representative of the UM disease. We identified a strong synergy between the mTOR inhibitor Everolimus and the PI3K inhibitor GDC0941. This combination resulted in an increase in apoptosis in several UM cell lines compared to monotherapies and enhanced the anti-tumor effect of each single agent in two patient-derived xenografts. Furthermore, we showed that the synergism between the two drugs was associated with the relief by GDC0491 of a reactivation of AKT induced by Everolimus. Altogether, our results highlight a novel and effective combination strategy, which could be beneficial for UM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.