The European wildcat Felis silvestris silvestris, which can hybridize with the domestic cat Felis catus to produce fertile hybrids, is threatened by hybridization. To identify the behavioural processes that can affect interbreeding, we investigated the spatio-temporal sharing between wildcats, domestic cats and their hybrids (defined on their genotypes) in a rural area of north-eastern France where hybridization is frequent. Wildcats' and hybrids' home ranges were larger than those of domestic cats, and they did not vary according to body mass, season and reproductive period. The three types of cats had similar daily activity rhythms but the concordance between their space use patterns was low or null. Thus, a high spatio-temporal concordance is not a prerequisite for hybridization. Rare excursions made by the cats outside of their home ranges may be at the origin of interbreeding. Moreover, hybrids may play a key role in hybridization by behaving as wildcats and by sharing at least a part of their range with them as well as with domestic cats. Behavioural barriers between them and wildcats may not exist because of their similarity in morphology and spatial behaviour.
BackgroundThe grey wolf (Canis lupus) is naturally recolonizing its former habitats in Europe where it was extirpated during the previous two centuries. The management of this protected species is often controversial and its monitoring is a challenge for conservation purposes. However, this elusive carnivore can disperse over long distances in various natural contexts, making its monitoring difficult. Moreover, methods used for collecting signs of presence are usually time-consuming and/or costly. Currently, new acoustic recording tools are contributing to the development of passive acoustic methods as alternative approaches for detecting, monitoring, or identifying species that produce sounds in nature, such as the grey wolf. In the present study, we conducted field experiments to investigate the possibility of using a low-density microphone array to localize wolves at a large scale in two contrasting natural environments in north-eastern France. For scientific and social reasons, the experiments were based on a synthetic sound with similar acoustic properties to howls. This sound was broadcast at several sites. Then, localization estimates and the accuracy were calculated. Finally, linear mixed-effects models were used to identify the factors that influenced the localization accuracy.ResultsAmong 354 nocturnal broadcasts in total, 269 were recorded by at least one autonomous recorder, thereby demonstrating the potential of this tool. Besides, 59 broadcasts were recorded by at least four microphones and used for acoustic localization. The broadcast sites were localized with an overall mean accuracy of 315 ± 617 (standard deviation) m. After setting a threshold for the temporal error value associated with the estimated coordinates, some unreliable values were excluded and the mean accuracy decreased to 167 ± 308 m. The number of broadcasts recorded was higher in the lowland environment, but the localization accuracy was similar in both environments, although it varied significantly among different nights in each study area.ConclusionsOur results confirm the potential of using acoustic methods to localize wolves with high accuracy, in different natural environments and at large spatial scales. Passive acoustic methods are suitable for monitoring the dynamics of grey wolf recolonization and so, will contribute to enhance conservation and management plans.
Obtaining estimates of animal population density is a key step in providing sound conservation and management strategies for wildlife. For many large carnivores however, estimating density is difficult because these species are elusive and wide‐ranging. Here, we focus on providing the first density estimates of the Eurasian lynx (Lynx lynx) in the French Jura and Vosges mountains. We sampled a total of 413 camera trapping sites (with two cameras per site) between January 2011 and April 2016 in seven study areas across seven counties of the French Jura and Vosges mountains. We obtained 592 lynx detections over 19,035 trap days in the Jura mountains and 0 detection over 6,804 trap days in the Vosges mountains. Based on coat patterns, we identified a total number of 92 unique individuals from photographs, including 16 females, 13 males, and 63 individuals of unknown sex. Using spatial capture–recapture (SCR) models, we estimated abundance in the study areas between 5 (SE = 0.1) and 29 (0.2) lynx and density between 0.24 (SE = 0.02) and 0.91 (SE = 0.03) lynx per 100 km2. We also provide a comparison with nonspatial density estimates and discuss the observed discrepancies. Our study is yet another example of the advantage of combining SCR methods and noninvasive sampling techniques to estimate density for elusive and wide‐ranging species, like large carnivores. While the estimated densities in the French Jura mountains are comparable to other lynx populations in Europe, the fact that we detected no lynx in the Vosges mountains is alarming. Connectivity should be encouraged between the French Jura mountains, the Vosges mountains, and the Palatinate Forest in Germany where a reintroduction program is currently ongoing. Our density estimates will help in setting a baseline conservation status for the lynx population in France.
The faeces of the red fox, Vulpes vulpes (Linnaeus), and the domestic cat, Felis catus (Linnaeus), can be responsible for spreading eggs of Echinococcus multilocularis Leuckart, 1863 and oocysts of Toxoplasma gondii (Nicolle et Manceaux, 1908) into the environment. The accidental ingestion of these eggs or oocysts, through consumption of raw fruits or vegetables grown in or in contact with contaminated soil, can lead to alveolar echinococcosis (AE) or toxoplasmosis in humans. The present study provides a quantitative assessment of the faecal deposition by foxes and cats in kitchen gardens where fruits and vegetables are grown and its consequences for zoonosis transmission. The density of definitive host faeces is considered as one of the main factors in infection risk for intermediate hosts. The density of fox and cat faeces, as well as the prevalence of both AE and toxoplasmosis in rodent populations (contaminated by ingestion of eggs or oocysts), were compared within and outside kitchen gardens. Our results showed that the mean density of fox faeces did not significantly differ between kitchen gardens and habitat edges (0.29 ± 0.04 faeces/m vs 0.22 ± 0.02 faeces/m), the latter being known as an area of high fox faeceal densities. The density of cat faeces was significantly higher within the kitchen garden than outside (0.86 ± 0.22 faeces/m vs 0.04 ± 0.02 faeces/m). The sampled kitchen gardens might therefore be considered as possible hotspots for both fox and cat defecation. Of the 130 rodents trapped, 14% were infected by at least one species of fox or cat intestinal parasite. These rodents were significantly more often infected when they were exposed to a kitchen garden. These results suggest that the deposit of fox and cat faeces in kitchen gardens would significantly impact the risk of human exposure to E. multilocularis and T. gondii. and should be prevented using effective means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.