In this Letter, we show that the strong coupling between a disordered set of molecular emitters and surface plasmons leads to the formation of spatially coherent hybrid states extended on macroscopic distances. Young-type interferometric experiments performed on a system of J-aggregated dyes spread on a silver layer evidence the coherent emission from different molecular emitters separated by several microns. The coherence is absent in systems in the weak-coupling regime demonstrating the key role of the hybridization of the molecules with the plasmon.
International audienceInAs quantum-dot (QD) laser structures are grown on (113)B-oriented InP substrate by gas-source molecular-beam epitaxy. Following an optimized growth procedure, a high density of 1.1×1011 cm−2 of uniformly sized QDs is achieved. Broad-area lasers containing three stacked QD layers have been realized and tested. Laser emission on the ground-state transition (λ = 1.59 μm) is obtained at room temperature (RT), at a threshold current density as low as 190 A/cm2. Ground-state modal gain and transparency current density is measured to be 7 cm−1 and 23 A/cm2 per dot layer. Ground-state laser emission is also demonstrated from low temperature (100 K, Jth = 33 A/cm2) to high temperature (350 K), exhibiting an insensitive threshold in the [100, 170] K range, and a 55 K characteristic temperature at RT
We report on the observation of the strong coupling regime occurring between a Tamm plasmon (TP) mode and an exciton from inorganic quantum wells (QWs). The sample is formed by a silver thin film deposited onto an AlAs/GaAlAs Bragg reflector containing InGaAs QWs located in the high refractive index layers. Angular resolved reflectometry experiments evidence a clear anticrossing in the dispersion relations, a signature of the strong coupling regime. The Rabi splitting energy is 11.5 meV. The experimental data are in very good agreement with simple transfer matrix calculations. The emission from low and high energy TP/exciton polaritons is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.