Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.
Heterochromatin in eukaryotic genomes regulates diverse chromosomal processes including transcriptional silencing. However, in Schizosaccharomyces pombe RNA polymerase II (RNAPII) transcription of centromeric repeats is essential for RNA-interference-mediated heterochromatin assembly. Here we study heterochromatin dynamics during the cell cycle and its effect on RNAPII transcription. We describe a brief period during the S phase of the cell cycle in which RNAPII preferentially transcribes centromeric repeats. This period is enforced by heterochromatin, which restricts RNAPII accessibility at centromeric repeats for most of the cell cycle. RNAPII transcription during S phase is linked to loading of RNA interference and heterochromatin factors such as the Ago1 subunit of the RITS complex and the Clr4 methyltransferase complex subunit Rik1 (ref. 7). Moreover, Set2, an RNAPII-associated methyltransferase that methylates histone H3 lysine 36 at repeat loci during S phase, acts in a pathway parallel to Clr4 to promote heterochromatin assembly. We also show that phosphorylation of histone H3 serine 10 alters heterochromatin during mitosis, correlating with recruitment of condensin that affects silencing of centromeric repeats. Our analyses suggest at least two distinct modes of heterochromatin targeting to centromeric repeats, whereby RNAPII transcription of repeats and chromodomain proteins bound to methylated histone H3 lysine 9 mediate recruitment of silencing factors. Together, these processes probably facilitate heterochromatin maintenance through successive cell divisions.
Histone acetylation is important in regulating DNA accessibility. Multifunctional Sin3 proteins bind histone deacetylases (HDACs) to assemble silencing complexes that selectively target chromatin. We show that, in fission yeast, an essential HDAC, Clr6, exists in two distinct Sin3 core complexes. Complex I contains an essential Sin3 homolog, Pst1, and other factors, and predominantly targets gene promoters. Complex II contains a nonessential Sin3 homolog, Pst2, and several conserved proteins. It preferentially targets transcribed chromosomal regions and centromere cores. Defects in complex II abrogate global protective functions of chromatin, causing increased accessibility of DNA to genotoxic agents and widespread antisense transcripts that are processed by the exosome. Notably, the two Clr6 complexes differentially repress forward and reverse centromeric repeat transcripts, suggesting that these complexes regulate transcription in heterochromatin and euchromatin in similar manners, including suppression of spurious transcripts from cryptic start sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.