In the quest to achieve sustainable pipeline operations and improve pipeline safety, effective corrosion control and improved maintenance paradigms are required. For underground pipelines, external corrosion prevention mechanisms include either a pipeline coating or impressed current cathodic protection (ICCP). For extensive pipeline networks, time-based preventative maintenance of ICCP units can degrade the CP system’s integrity between maintenance intervals since it can result in an undetected loss of CP (forced corrosion) or excessive supply of CP (pipeline wrapping disbondment). A conformance evaluation determines the CP system effectiveness to the CP pipe potentials criteria in the NACE SP0169-2013 CP standard for steel pipelines (as per intervals specified in the 49 CFR Part 192 statute). This paper presents a predictive maintenance framework based on the core function of the ICCP system (i.e., regulating the CP pipe potential according to the NACE SP0169-2013 operating window). The framework includes modeling and predicting the ICCP unit and the downstream test post (TP) state using historical CP data and machine learning techniques (regression and classification). The results are discussed for ICCP units operating either at steady state or with stray currents. This paper also presents a method to estimate the downstream TP’s CP pipe potential based on the multiple linear regression coefficients for the supplying ICCP unit. A maintenance matrix is presented to remedy the defined ICCP unit states, and the maintenance time suggestion is evaluated using survival analysis, cycle times, and time-series trend analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.