We will in this paper address the problem of offline path planning for Unmanned Aerial Vehicles (UAVs). Our goal is to find paths that meet mission objectives, are safe with respect to collision and grounding, fuel efficient and satisfy criteria for communication. Due to the many nonconvex constraints of the problem, Mixed Integer Linear Programming (MILP) will be used in finding the path. Approximate communication constraints and terrain avoidance constraints are used in the MILP formulation. To achieve more accurate prediction of the ability to communicate, the path is then analyzed in the radio propagation toolbox SPLAT!, and if the UAVs are not able to communicate according to design criteria for bandwidth, constraints are modified in the optimization problem in an iterative manner. The approach is exemplified with the following setup: The path of two UAVs are planned so they can serve as relay nodes between a target without line of sight to the base station.
Purpose of Review This paper provides an overview of the role of humans and robots in smart factories, their connection to Industry 4.0, and which progress they make when it comes to related technologies. Recent Findings The current study shows that a decade was not enough to provide a reference implementation or application of Industry 4.0, like smart factories. In 2011, Industry 4.0 was mentioned for the first time in the scientific community. Industry 4.0 arrived with many new enabling technologies and buzzwords, e.g., Internet of Things (IoT), Cyber-Physical Systems (CPS), and Digital Twins (DT). Summary This paper first defines smart factories and smart manufacturing in relation to the role of humans and robots. Followed by an overview of selected technologies in smart factories. Concluded by future prospects and its' relation to smart manufacturing.
In this paper, a model of a leader-follower spacecraft formation in six degrees of freedom is derived and presented. The nonlinear model describes the relative translational and rotational motion of the spacecraft, and extends previous work by providing a more complete factorization, together with detailed information about the matrices in the model. The resulting model shows many similarities with models for systems such as robot manipulators and marine vehicles. In addition, mathematical models of orbital perturbations due to gravitational variations, atmospheric drag, solar radiation and third-body effects are presented for completeness. Results from simulations are presented to visualize the properties of the model and to show the impact of the different orbital perturbations on the flight path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.