Abstract. The specific CB 2 cannabinoid receptor agonist JWH-133 induced cognitive improvement in double APP/PS1 transgenic mice, a genetic model of Alzheimer's disease. This effect was more pronounced when administered at the pre-symptomatic rather than the early symptomatic stage. The cognitive improvement was associated with decreased microglial reactivity and reduced expression of pro-inflammatory cytokines IL-1, IL-6, TNF␣, and IFN␥. In addition, JWH-133 reduced the expression of active p38 and SAPK/JNK, increased the expression of inactive GSK3, and lowered tau hyperphosphorylation at Thr181 in the vicinity of amyloid- plaques. Moreover, JWH-133 produced a decrease in the expression of hydroxynonenal adducts, and enhanced the expression of SOD1 and SOD2 around plaques. In contrast, the chronic treatment with JWH-133 failed to modify the amyloid- production or deposition in cortex and hippocampus. In conclusion, the present study lends support to the idea that stimulation of CB 2 receptors ameliorates several altered parameters in Alzheimer's disease such as impaired memory and learning, neuroinflammation, oxidative stress damage and oxidative stress responses, selected tau kinases, and tau hyperphosphorylation around plaques.
The limited effectiveness of current therapies against Alzheimer’s disease (AD) highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful β-amyloid peptide action and tau phosphorylation, as well as by promoting the brain’s intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of AD, which together encourage progress toward a clinical trial.
Several recent findings suggest that targeting the endogenous cannabinoid system can be considered as a potential therapeutic approach to treat Alzheimer's disease (AD). The present study supports this hypothesis demonstrating that delta-9-tetrahydrocannabinol (THC) or cannabidiol (CBD) botanical extracts, as well as the combination of both natural cannabinoids, which are the components of an already approved cannabis-based medicine, preserved memory in AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage. Moreover, THC + CBD reduced learning impairment in AβPP/PS1 mice. A significant decrease in soluble Aβ42 peptide levels and a change in plaques composition were also observed in THC + CBD-treated AβPP/PS1 mice, suggesting a cannabinoid-induced reduction in the harmful effect of the most toxic form of the Aβ peptide. Among the mechanisms related with these positive cognitive effects, the anti-inflammatory properties of cannabinoids may also play a relevant role. Here we observed reduced astrogliosis, microgliosis, and inflammatory-related molecules in treated AβPP/PS1 mice, which were more marked after treatment with THC + CBD than with either THC or CBD. Moreover, other cannabinoid-induced effects were uncovered by a genome-wide gene expression study. Thus, we have identified the redox protein thioredoxin 2 and the signaling protein Wnt16 as significant substrates for the THC + CBD-induced effects in our AD model. In summary, the present findings show that the combination of THC and CBD exhibits a better therapeutic profile than each cannabis component alone and support the consideration of a cannabis-based medicine as potential therapy against AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.