These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
International audienceThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127(-) and CD127(+) early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127(-) and CD127(+) ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127(-) ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127(+) ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis
The correlates of protective immunity to disease-inducing viruses in humans remain to be elucidated. We determined the kinetics and characteristics of cytomegalovirus (CMV)-specific CD4 ؉ and CD8 ؉ T cells in the course of primary CMV infection in asymptomatic and symptomatic recipients of renal transplants. Specific CD8 ؉ cytotoxic T lymphocyte (CTL) and antibody responses developed regardless of clinical signs. CD45RA ؊ CD27 ؉ CCR7 ؊ CTLs, although classified as immature effector cells in HIV infection, were the predominant CD8 effector population in the acute phase of protective immune reactions to CMV and were functionally competent. Whereas in asymptomatic individuals the CMV-specific CD4 ؉ T-cell response preceded CMV-specific CD8 ؉ T-cell responses, in symptomatic individuals the CMV-specific effectormemory CD4 ؉ T-cell response was delayed and only detectable after antiviral therapy.The appearance of disease symptoms in these patients suggests that functional CD8 ؉ T-cell and antibody responses are insufficient to control viral replication and that formation of effector-memory CD4 ؉ T cells is necessary for recovery of infection.
Cytotoxic CD4+CD28− T cells form a rare subset in human peripheral blood. The presence of CD4+CD28− cells has been associated with chronic viral infections, but how these particular cells are generated is unknown. In this study, we show that in primary CMV infections, CD4+CD28− T cells emerge just after cessation of the viral load, indicating that infection with CMV triggers the formation of CD4+CD28− T cells. In line with this, we found these cells only in CMV-infected persons. CD4+CD28− cells had an Ag-primed phenotype and expressed the cytolytic molecules granzyme B and perforin. Importantly, CD4+CD28− cells were to a large extent CMV-specific because proliferation was only induced by CMV-Ag, but not by recall Ags such as purified protein derivative or tetanus toxoid. CD4+CD28− cells only produced IFN-γ after stimulation with CMV-Ag, whereas CD4+CD28+ cells also produced IFN-γ in response to varicella-zoster virus and purified protein derivative. Thus, CD4+CD28− T cells emerge as a consequence of CMV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.