Chemical warfare agents are a class of organic molecules used as chemical weapons due to their high toxicity and lethal effects. For this reason, the fast detection of these compounds in the environment is crucial. Traditional detection methods are based on instrumental techniques, such as mass spectrometry or HPLC, however the use of molecular sensors able to change a detectable property (e. g., luminescence, color, electrical resistance) can be cheaper and faster. Today, molecular sensing of chemical warfare agents is mainly based on the “covalent approach”, in which the sensor reacts with the analyte, or on the “supramolecular approach”, which involves the formation of non‐covalent interactions between the sensor and the analyte. This Review is focused on the recent developments of supramolecular sensors of organophosphorus chemical warfare agents (from 2013). In particular, supramolecular sensors are classified by function of the sensing mechanism: i) Lewis Acids, ii) hydrogen bonds, iii) macrocyclic hosts, iv) multi‐topic sensors, v) nanosensors. It is shown how the supramolecular non‐covalent approach leads to a reversible sensing and higher selectivity towards the selected analyte respect to other interfering molecules.
Lanthanide-doped yttrium oxide nanoparticles can display selective upconversion properties, rendering them invaluable in the field of nanomedicine for both sensing and diagnostics. Different syntheses of Er:Y2O3 and Nd:Y2O3 nanoparticles (NPs) were studied and optimized to obtain small particles of regular shape and good crystallinity. The morphological and compositional characterizations of the nanoparticles were obtained with different techniques and showed that both Er:Y2O3 and Nd:Y2O3 NPs were well dispersed, with dimensions of the order of a few tens of nanometers. The photoluminescence and cathodoluminescence measurements showed that both Er:Y2O3 and Nd:Y2O3 NPs had good emission as well as upconversion. The nanophosphors were functionalized by a pegylation procedure to suppress unwanted reactions of the NPs with other biological components, making the NP systems biocompatible and the NPs soluble in water and well dispersed. The pegylated core/shell nanoparticles showed the same morphological and optical characteristics as the core, promoting their strategic role as photoactive material for theragnostics and biosensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.