Portal hypertension, the most important complication in patients with cirrhosis of the liver, is a serious and life-threatening disease for which there are few therapeutic options. Because angiogenesis is a pathological hallmark of portal hypertension, the goal of this study was to determine the effects of sorafenib-a potent inhibitor of proangiogenic vascular endothelial growth factor receptor 2 (VEGFR-2), platelet-derived growth factor receptor  (PDGFR-), and Raf kinases-on splanchnic, intrahepatic, systemic, and portosystemic collateral circulations in two different experimental models of portal hypertension: rats with prehepatic portal hypertension induced by partial portal vein ligation and rats with intrahepatic portal hypertension and secondary biliary cirrhosis induced by bile duct ligation. Such a comprehensive approach is necessary for any translational research directed toward defining the efficacy and potential clinical application of new therapeutic agents. Sorafenib administered orally once a day for 2 weeks in experimental models of portal hypertension and cirrhosis effectively inhibited VEGF, PDGF, and Raf signaling pathways, and produced several protective effects by inducing an approximately 80% decrease in splanchnic neovascularization and a marked attenuation of hyperdynamic splanchnic and systemic circulations, as well as a significant 18% decrease in the extent of portosystemic collaterals. In cirrhotic rats, sorafenib treatment also resulted in a 25% reduction in portal pressure, as well as a remarkable improvement in liver damage and intrahepatic fibrosis, inflammation, and angiogenesis. Notably, beneficial effects of sorafenib against tissue damage and inflammation were also observed in splanchnic organs. Conclusion: Taking into account the limitations of translating animal study results into humans, we believe that our findings will stimulate consideration of sorafenib as an effective therapeutic agent in patients suffering from advanced portal hypertension. (HEPATOLOGY 2009;49:1245-1256 See Editorial on Page 1066 P ortal hypertension is the most important complication that develops in patients with cirrhosis of the liver and remains a leading cause of morbidity and mortality worldwide. 1 The portal hypertensive syndrome is characterized by a pathological increase in portal pressure and by the development of hyperdynamic splanchnic circulation, with an increase in blood flow in splanchnic organs draining into the portal vein and a subsequent elevation in portal venous inflow. Such increased portal venous inflow is a significant factor maintaining and worsening portal pressure elevation and determining the formation of ascites. Another characteristic feature of portal hypertension is the formation of an extensive network of portosystemic collateral vessels; these include gastroesophageal varices, which are prone to rupture that can cause massive, life-threatening gastroesophageal bleeding. In addition, collateral vessels result in shunting of portal blood into the systemic circulation ...
Our results provide new insights into how angiogenesis regulates portal hypertension by demonstrating that the maintenance of increased portal pressure, hyperkinetic circulation, splanchnic neovascularization, and portosystemic collateralization is regulated by VEGF and PDGF in portal hypertensive rats. Importantly, these findings also suggest that an extended antiangiogenic strategy (that is, targeting VEGF/endothelium and PDGF/pericytes) may be a novel approach to the treatment of portal hypertension.
We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.