Abstract1. Mixed conifer-hardwood forests can be more productive than pure forests and they are increasingly considered as ecosystems that could provide adaptation strategies in the face of global change. However, the combined effects of tree-to-tree competition, rising atmospheric CO 2 concentrations and climate on such mixtures remain poorly characterized and understood.2. To fill this research gap, we reconstructed 34-year series of growth (basal area increment, BAI) and intrinsic water-use efficiency (iWUE) of Scots pine (Pinus sylvestris L.)-European beech (Fagus sylvatica L.) mixed stands at two climatically contrasting sites located in the southwestern Pyrenees. We also gathered data on tree-to-tree competition and climate variables in order to test the hypotheses that (1) radial growth will be greater when exposed to inter-than to intraspecific competition, that is, when species complementarity occurs and (2) enhanced iWUE could be linked to improved stem radial growth.3. Growth of both species was reduced when intraspecific competition increased.Species complementarity was linked to improved growth of Scots pine at the continental site, while competition overrode any complementarity advantage at the drought-prone Mediterranean site. Beech growth did not show any significant response to pine admixture likely due to shade tolerance and the highly competitive nature of this species. Increasing interspecific competition drove recent iWUE changes, which increased in Scots pine but decreased in European beech. The iWUE enhancement did not involve any growth improvement in Scots pine.However, the positive BAI-iWUE relationship found for beech suggests an enhanced beech growth in drought-prone sites due to improved water use.4. Synthesis. Complementarity may enhance growth in mixed forests. However, water scarcity can constrict light-related complementarity for shade intolerant species (Scots pine) in drought-prone sites. Basal area increment-intrinsic water-use efficiency relationships were negative for Scots pine and positive for European beech.These contrasting behaviours have got implications for coping with the expected increasing drought events in Scots pine-European beech mixtures located near the Paper previously published as Standard Paper
Management of mixedwoods is advocated as an effective adaptation strategy to increase ecosystem resiliency in the context of climate change. Although mixedwoods have been shown to have greater resource use efficiency relative to pure stands, considerable uncertainty remains with respect to the underlying ecological processes. We explored species interactions in Scots pine/ European beech mixedwoods with the process-based model FORECAST Climate. The model was calibrated for two contrasting forests in the southwestern Pyrenees (northern Spain): a wet Mediterranean site at 625 m.a.s.l. and a subalpine site at 1335 m.a.s.l. Predicted mixedwood yield was higher than that for beech stands but lower than pine stands. When simulating climate change, mixedwood yield was reduced at the Mediterranean site (−33%) but increased at the subalpine site (+11%). Interaction effects were enhanced as stands developed. Complementarity dominated the Mediterranean stand but neutral or net competition dominated the subalpine stand, which had higher stand density and water availability. Reduced water demand and consumption, increased canopy interception, and improved water-use efficiency in mixtures compared to beech stands, suggest a release of beech intraspecific competition. Beech also facilitated pine growth through better litter quality, nonsymbiotic nitrogen fixation, and aboveand belowground stratification, leading to higher foliar nitrogen content and deeper canopies in pines. In conclusion, mixtures may improve water availability and use efficiency for beech and light interception for pine, the main limiting factors for each species, respectively. Encouraging pine-beech mixtures could be an effective adaptation to climate change in drought-prone sites in the Mediterranean region.
Density is an important wood mechanical property and an indicator of xylem architecture and hydraulic conductivity. It can be influenced by forest management and climate. We studied the impact of thinning and climate variables on annual stem radial growth (ring width and ring density, and their earlywood and latewood components) in two contrasting Scots pine (Pinus sylvestris L.) stands in northern Spain (one continental, one Mediterranean). At each site, three thinning regimes (control or T0, removing 20% basal area or T20, and removing 30% or T30) were randomly applied to nine plots per site (three plots per treatment) in 1999. Thinning was repeated at the Mediterranean site in 2009 (increasing thinning intensity in T30 to 40%). Eight trees per plot were cored in spring 2014. Second thinning at the Mediterranean site and first thinning at the continental site generally caused significantly wider ring (RW), earlywood (EW) and latewood (LW) widths, although no differences between T20 and T30/40 were found, supporting in part the common observation that radial growth is enhanced following thinning as competition for water and nutrients is reduced. At the Mediterranean site, values of latewood density (LD) and maximum density (Dmax) relative to pre-thinning conditions were significantly lower in T0 than in T30. However, at the continental site, relative changes of ring density (RD) and LD were significantly higher in T0 than in T20 and T30. Climate significantly affected not only RW but also RD, with significant RD drops during or right after unusually warm-dry years (e.g., 2003, 2011), which were characterized by LD reductions between 5.4 and 8.0%. Such RD decreases were quickly followed by recovery of pre-drought density values. These results indicate trees temporarily reduce LD as a way to enhance hydraulic conductivity during dry summers. However, climate effects on wood density were site-dependent. We also detected that the thinning effect was not intense enough to prevent drought-induced changes in wood density by altering water availability, but it could help to reduce wood properties fluctuations and therefore maintain more homogeneous wood mechanic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.