Abstract-In this paper we propose energy efficient design and operation of infrastructures incorporating integrated optical network and IT resources. For the first time we quantify significant energy savings of a complete solution jointly optimizing the allocation and provisioning of both network and IT resources. Our approach involves virtualization of the infrastructure resources and it is proposed and developed in the framework of the European project GEYSERS -Generalised Architecture for Dynamic Infrastructure Services.
Community networks are an emerging and successful model for the Future Internet across Europe and far beyond. The CONFINE project complements existing FIRE (Future Internet Research and Experimentation) infrastructures by establishing Community-Lab, a new facility for experimentallydriven research built on the federation of existing community IP networks constituted by more than 20,000 nodes and 20,000 Km of links. In this paper we present the benefits of having such testbed for the research community as well as the improvement and evolution of community networks themselves. This paper presents i) the challenges and requirements for Community-Lab, ii) the resulting testbed architecture, iii) the current state of implementation and iv) the integration of the testbed with existing community networks.
In recent years, we have witnessed the exponential growth of wireless community networks as a response to the clear necessity of Internet access for participation in society. For wireless mesh networks that can scale to up to thousands of nodes, which are owned and managed in a decentralized way, it is imperative for their survival to provide the network with self-management mechanisms that reduce the requirements of human intervention and technological knowledge in the operation of a community network. In this paper, we focus on one important self-management mechanism, routing, and we study the scalability, performance, and stability of three proactive mesh routing protocols: BMX6, OLSR, and Babel. We study different metrics on an emulation framework and on the W-ILab.T testbed at iMinds, making the most of the two worlds. Emulation allows us to have more control over the topology and more systematically repeat the experiments, whereas a testbed provides a realistic wireless medium and more reliable measurements, especially in terms of interference and CPU consumption. Results show the relative merits, costs, and limitations of the three protocols.
Abstract. Over the years, the Internet has become a central tool for society. The extent of its growth and usage raises critical issues associated with its design principles that need to be addressed before it reaches its limits. Many emerging applications have increasing requirements in terms of bandwidth, QoS and manageability. Moreover, applications such as Cloud computing and 3D-video streaming require optimization and combined provisioning of different infrastructure resources and services that include both network and IT resources. Demands become more and more sporadic and variable, making dynamic provisioning highly needed. As a huge energy consumer, the Internet also needs to be energyconscious. Applications critical for society and business (e.g., health, finance) or for real-time communication demand a highly reliable, robust and secure Internet. Finally, the future Internet needs to support sustainable business models, in order to drive innovation, competition, and research. Combining optical network technology with Cloud technology is key to addressing the future Internet/Cloud challenges. In this con- text, we propose an integrated approach: realizing the convergence of the IT-and optical-network-provisioning models will help bring revenues to all the actors involved in the value chain. Premium advanced network and IT managed services integrated with the vanilla Internet will ensure a sustainable future Internet/Cloud enabling demanding and ubiquitous applications to coexist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.