Purpose 3Local open markets, trading fruits and vegetables, are widespread in Mediterranean 4 countries, such as Tunisia and Jordan, producing large amounts of organic waste. 5Applying an anaerobic digestion process on this substrate makes it crucial to evaluate 6 the waste mixture composition and seasonal variability properly. In this study, after 7 defining an average composition of the fruit and vegetable waste (FVW) mixture 8 produced in Sfax (Tunisia) and Amman (Jordan) in three seasonal intervals (autumn-9 winter, spring, and summer), the biochemical methane potential (BMP) of an 10 artificially created FVW mixture was individually determined by three European 11 institutions located in Spain, Italy, and Greece. The average BMP from all three 12 seasons and laboratories was 286±52 NmL CH 4 g COD added -1 , close to the theoretical 13 maximum yield of 350 NmL CH 4 g COD added -1 , indicating a high biodegradability of 14 the waste. Τhe biochemical methane yields of the spring mixtures were not 15 statistically different across the three labs. The most significant differences among the 16 BMP results were obtained for the autumn/winter and the summer mixtures used in 17 Spain, likely due to the variety or ripeness of fruits and vegetables collected in the 18 local markets. In the other two labs in Italy and Greece, no statistical difference was 19 observed for the BMPs of the three season mixtures within the same lab. Therefore, 20 not a critical difference in the biodegradability of such FVW is expected along the 21 different seasons, indicating that the operation of a full-scale digester over a whole 22 year would constantly benefit from the supplementation of a high biochemical 23 methane potential feedstock.
Anaerobic digestion (AD) is a mature technology commonly used for manure treatment, both for the stabilisation of waste and for the production of energy. The introduction of new incentives could represent an opportunity for biogas production, when the current feed-in-tariffs, which improved the financial feasibility of AD plants producing electricity will end. This paper examines the feasibility of reconverting an existing AD biogas production plant into a biomethane production plant. The AD plant, in this case study, is a two-stage reactor situated in the centre of Italy and mainly fed with livestock manure from both cows and buffaloes. The economic analysis of two hypotheses is provided: i) continuing the electricity production from biogas after the end of the current incentives (2025); ii) considering the new incentives program for the biomethane and reconverting the plant, using hollow-fibre membranes for the purification of the raw biogas (SEPURAN® Green modules, EnviTec). For this purpose, investment and operating costs, based on plant monitoring data (2105.3 m3 d–1, Biogas production; 4432.9 kWh d–1, electricity production) as well as on market analysis for costs evaluation were considered. The mean biogas production for the considered year was about 30% less than the expected production, indicated by producer, highlighting the need for the optimisation of the management of the reactors. Moreover, based on the averaged methane production (June 2017-June 2018), results show that: i) plant conversion for the biomethane production is not suitable for small-scale plants, due to the high investment costs of upgrading technology (1.2 M€); ii) when current incentives end, the electricity production from biogas in the current plant may not be self-sufficient, due to the highly expensive operating costs. This paper provides a first analysis of the possible fate of the biogas plants under the new incentives.
Abstract. Ammonia emission reduces the reliability and nitrogen (N) fertilizer efficiency of animal manure and mineral fertilizers applied to fields. The loss of ammonia to the atmosphere is frequently compensated for by costly over-application of N fertilizers. New technologies to reduce ammonia emission are regularly developed, and their efficacy needs to be tested using accurate methods. To date, a major obstacle to many available emission measurement techniques is the requirement of large plot sizes of homogeneous surface characteristics, which particularly is a challenge to the number of plot-level replicates that can be carried out on a field providing uniform surface characteristics throughout. The objectives of this research were to test three different methods for measuring NH3 flux when applied to small plots (<315 m2) by comparison with conventional micrometeorological methods and to determine the labor intensity and expenses related to the respective methods in their entirety. The integrated horizontal flux (IHF) method and the ZINST method were used with passive flux Leuning samplers as micrometeorological reference methods. As examples of conventional small-plot emission measurement techniques, wind tunnels measuring gas-phase ammonia using ALPHA passive diffusion samplers and a flux chamber method using Dräger tubes for measurements of ammonia concentration (DTM) were used. As an inexpensive alternative small-plot method, we studied the feasibility of applying ALPHA passive diffusion samplers and battery-driven cup anemometers at ZINST height on small source areas (<315 m2), coupled with a backward Lagrangian stochastic (bLS) dispersion model to calculate emission fluxes (referred to as the AbLS method). When exposure duration was appropriate and weather conditions were not extreme, tests showed no significant difference in NH3 emission fluxes measured with AbLS, compared to those obtained with IHF and ZINST using Leuning samplers. However, the AbLS method did not give reliable emission measurements in periods with high wind speeds and heavy rain. It was also shown that the AbLS method provided valid results when reducing the plot radius from the standard 20 m to 10 m, or even 5 m, provided that the ALPHA samplers were exposed for at least 5 or 6 h. Emission from 200 kg urea-N ha-1 was between 20 and 30 kg N ha-1 in the two trials. The cost for one study running for one week using the ZINST or bLS methodology, including equipment for four plots and eight measurement intervals, was $2785 if horizontal fluxes were measured using the ALPHA samplers, compared to $12,301 using the Leuning samplers and $13,928 using gas washing bottles. Using the DTM flux chamber method once is a little more expensive than using the AbLS method, but less expensive if the cost of purchasing the equipment is distributed over five studies in five years. Using wind tunnels is as costly as measuring emissions with the Leuning samplers or gas washing bottles using the bLS or ZINST method. Keywords: ALPHA samplers, Ammonia emission, AbLS, bLS method, DTM method, IHF method, Labor cost, Passive ammonia samplers, Wind tunnels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.