Malignant gliomas are highly aggressive tumors of the central nervous system that rely on production of growth factors for tumor progression. Vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and tumor necrosis factor-A, for example, are up-regulated in these tumors to promote angiogenesis and proliferation. RNA stability, mediated through adenine and uridine-rich elements (ARE) in the 3 ¶ untranslated region, is a critical control point for regulating these growth factors. RNA half-life is predominantly governed by a balance between stabilizing and destabilizing factors that bind to ARE. We have previously shown that the stabilizing factor HuR is overexpressed in malignant gliomas and linked to RNA stabilization of angiogenic growth factors. Here, we report that the destabilizing factor tristetraprolin (TTP) is also ubiquitously expressed in primary malignant glioma tissues and cell lines. In contrast to benign astrogliotic tissues, however, the protein was hyperphosphorylated, with evidence implicating the p38/mitogen-activated protein kinase (MAPK) pathway. Conditional overexpression of TTP as a transgene in malignant glioma cells led to RNA destabilization of IL-8 and VEGF and down-regulation of protein production. Analysis of in vivo RNA binding indicated a shift of mRNA toward ectopic TTP and away from endogenous HuR. This biochemical phenotype was associated with a decrease in cell proliferation, loss of cell viability, and apoptosis. We postulate that hyperphosphorylation of TTP via p38/MAPK promotes progression of malignant gliomas by negatively regulating its RNA destabilizing function. [Cancer Res 2008;68(3):674-82]
TIA-1 related protein binds avidly to uridine-rich elements in mRNA and pre-mRNAs of a wide range of genes, including interleukin (IL)-8 and vascular endothelial growth factor (VEGF). The protein has diverse regulatory roles, which in part depend on the locus of binding within the transcript, including translational control, splicing and apoptosis. Here, we observed selective and potent inhibition of TIAR–RNP complex formation with IL-8 and VEGF 3′-untranslated regions (3′-UTRs) using thymidine-rich deoxyoligonucleotide (ODN) sequences derived from the VEFG 3′-UTR. We show by ultraviolet crosslinking and electrophoretic mobility shift assays that TIAR can bind directly to single-stranded, thymidine-rich ODNs but not to double-stranded ODNs containing the same sequence. TIAR had a nearly 6-fold greater affinity for DNA than RNA (Kdapp=1.6×10−9M versus 9.4 × 10−9 M). Truncation of TIAR indicated that the high affinity DNA-binding site overlaps with the RNA-binding site involving RNA recognition motif 2 (RRM2). However, RRM1 alone could also bind to DNA. Finally, we show that TIAR can be displaced from single-stranded DNA by active transcription through the binding site. These results provide a potential mechanism by which TIAR can shuttle between RNA and DNA ligands.
Vascular endothelial growth factor (VEGF) plays a neuroprotective role in mice harboring mutations of copper-zinc superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis (ALS). Conversely, the loss of VEGF expression through genetic depletion can give rise to a phenotype resembling ALS independent of SOD1 mutations. Here, we observe a profound downregulation of VEGF mRNA expression in spinal cords of G93A SOD1 mice that occurred early in the course of the disease. Using an in vitro culture model of glial cells expressing mutant SOD1, we demonstrate destabilization and downregulation of VEGF RNA with concomitant loss of protein expression that correlates with level of transgene expression. Using a luciferase reporter assay, we show that this molecular effect is mediated through a portion of the VEGF 3Ј-untranslated region (UTR) that harbors a class II adenylate/uridylate-rich element. Other mutant forms of SOD1 produced a similar negative effect on luciferase RNA and protein expression. Mobility shift assay with a VEGF 3Ј-UTR probe reveals an aberrantly migrating complex that contains mutant SOD1. We further show that the RNA stabilizing protein, HuR (human antigen R), is translocated from nucleus to cytoplasm in mutant SOD1 cells in vitro and mouse motor neurons in vivo. In summary, our data suggest that mutant SOD1 gains a novel function, possibly by altering the ribonucleoprotein complex with the VEGF 3Ј-UTR. We postulate that the resultant dysregulation of VEGF posttranscriptional processing critically reduces the level of this neuroprotective growth factor and accelerates the neurodegenerative process in ALS.
Chronic inflammation in the central nervous system (CNS) is a central feature of many neurodegenerative and autoimmune diseases. As an immunologically competent cell, the astrocyte plays an important role in CNS inflammation. It is capable of expressing a number of cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) that promote inflammation directly and through the recruitment of immune cells. Checkpoints are therefore in place to keep tight control over cytokine production. Adenylate/uridylate-rich elements (ARE) in the 3′ untranslated region of cytokine mRNAs serve as a major checkpoint by regulating mRNA stability and translational efficiency. Here, we examined the impact of KH-type splicing regulatory protein (KSRP), an RNA binding protein which destabilizes mRNAs via the ARE, on cytokine expression and paracrine phenotypes of primary astrocytes. We identified a network of inflammatory mediators, including TNF-α and IL-1β, whose expression increased 2 to 4-fold at the RNA level in astrocytes isolated from KSRP−/− mice compared to littermate controls. Upon activation, KSRP−/− astrocytes produced TNF-α and IL-1β at levels that exceeded control cells by 15-fold or more. Conditioned media from KSRP−/− astrocytes induced chemotaxis and neuronal cell death in vitro. Surprisingly, we observed a prolongation of half-life in only a subset of mRNA targets and only after selective astrocyte activation. Luciferase reporter studies indicated that KSRP regulates cytokine gene expression at both transcriptional and post-transcriptional levels. Our results outline a critical role for KSRP in regulating pro-inflammatory mediators and have implications for a wide range of CNS inflammatory and autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.