Epidemiologic evidence indicates that exposure to heterocyclic amines in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of heterocyclic amines, which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of heterocyclic amine bioactivation in humans, the most mass abundant heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers where administered a dietary relevant dose of [ 14 C]PhIP 48 to 72 hours before surgery to remove colon tumors. Urine was collected for 24 hours after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All 10 subjects were phenotyped for cytochrome P4501A2 (CYP1A2), N-acetyltransferase 2, and sulfotransferase 1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N 2 -glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N 2 -glucuronide had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N 2 -glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group. (Cancer Res 2006; 66(21): 10541-7)
We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C]PhIP and [3H]IQ and utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQ adducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C]PhIP and [3H]IQ in rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver. With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.
ABSTRACT:The technique of accelerator mass spectrometry (AMS) was validated successfully and used to study the pharmacokinetics and disposition in dogs of a preclinical drug candidate (7-deaza-2-Cmethyl-adenosine; Compound A), after oral and intravenous administration. The primary objective of this study was to examine whether Compound A displayed linear kinetics across subpharmacological (microdose) and pharmacological dose ranges in an animal model, before initiation of a human microdose study. The AMS-derived disposition properties of Compound A were comparable to data obtained via conventional techniques such as liquid chromatography-tandem mass spectrometry and liquid scintillation counting analyses. Compound A displayed multiphasic kinetics and exhibited low plasma clearance (5.8 ml/min/kg), a long terminal elimination half-life (17.5 h), and high oral bioavailability (103%). Currently, there are no published comparisons of the kinetics of a pharmaceutical compound at pharmacological versus subpharmacological doses using microdosing strategies. The present study thus provides the first description of the full pharmacokinetic profile of a drug candidate assessed under these two dosing regimens. The data demonstrated that the pharmacokinetic properties of Compound A following dosing at 0.02 mg/kg were similar to those at 1 mg/kg, indicating that in the case of Compound A, the pharmacokinetics in the dog appear to be linear across this 50-fold dose range. Moreover, the exceptional sensitivity of AMS provided a pharmacokinetic profile of Compound A, even after a microdose, which revealed aspects of the disposition of this agent that were inaccessible by conventional techniques.The applications of accelerator mass spectrometry (AMS) are broad-ranging and vary from studying environmental and ecological issues such as the isotopic composition of the atmosphere, soil, and water (Hughen et al., 2000;Beck et al., 2001;Keith-Roach et al., 2001;Mironov et al., 2002), to archaeology and volcanology (Stafford et al., 1984;Vogel et al., 1990;Smith et al., 1999), to its use as a bioanalytical tool for nutritional research (Buchholz et al., 1999; Deuker et al., 2000;Weaver and Liebman, 2002). Biomedical applications of AMS and its use in the arena of pharmaceutical research also have been detailed in review articles (Barker and Garner, 1999;Garner, 2000;Turteltaub and Vogel, 2000). To date, most studies on the metabolism and disposition of xenobiotics by AMS have focused on the binding of carcinogens to DNA and proteins (Turteltaub et al., 1990Frantz et al., 1995;Dingley et al., 1999;Li et al., 2003). These studies have demonstrated a linear relationship between dose and DNA adduct formation. Applications of AMS to the field of pharmaceutical sciences have been limited to only a few studies (Kaye et al., 1997;Young et al., 2001;Garner et al., 2002). However, the pharmaceutical industry is becoming increasingly aware of the potential benefits that may accrue from the ultra-high sensitivity afforded by AMS in terms of evalu...
2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) has been implicated as a major mutagenic heterocyclic amine in the human diet and is carcinogenic in the rat prostate. To validate PhIP-induced rat prostatic neoplasia as a model of human prostate cancer progression, we sought to study the earliest histologic and morphologic changes in the prostate and to follow progressive changes over time. We fed sixty-seven 5-week-old male Fischer F344 rats with PhIP (400 ppm) or control diets for 20 weeks, and then sacrificed animals for histomorphologic examination at the ages of 25, 45, and 65 weeks. Animals treated with PhIP showed significantly more inflammation (P = .002, > .001, and .016 for 25, 45, and 65 weeks, respectively) and atrophy (P = .003, > .001, and .006 for 25, 45, and 65 weeks, respectively) in their prostate glands relative to controls. Prostatic intraepithelial neoplasia (PIN) occurred only in PhIP-treated rats. PIN lesions arose in areas of glandular atrophy, most often in the ventral prostate. Atypical cells in areas of atrophy show loss of glutathione S-transferase pi immunostaining preceding the development of PIN. None of the animals in this study developed invasive carcinomas, differing from those in previous reports. Overall, these findings suggest that the pathogenesis of prostatic neoplasia in the PhIP-treated rat prostate proceeds from inflammation to postinflammatory proliferative atrophy to PIN.
Ethylene oxide (EO) is widely used in the chemical industry and is also formed in humans through the metabolic oxidation of ethylene, generated during physiologic processes. EO is classified as a human carcinogen and is a direct acting alkylating agent, primarily forming N7-(2-hydroxyethyl)guanine (N7-HEG). To conduct accurate human risk assessments, it is vital to ascertain the relative contribution of endogenously versus exogenously derived DNA damage and identify the sources of background lesions. We have therefore defined in vivo dose-response relationships over a concentration range relevant to human EO exposures using a dual-isotope approach. By combining liquid chromatography-tandem mass spectrometry and high-performance liquid chromatographyaccelerator mass spectrometry analysis, both the endogenous and exogenous N7-HEG adducts were quantified in tissues of [ 14 C]EO-treated rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.