The [M(4)(II)L(4)](8+) [2 x 2]-grid-type complexes 1-8 present a set of features of particular interest for potential applications. All complexes exhibit multiple reduction levels at low reduction potentials paired with rather high stability. The modulation of the reduction potentials is possible by introduction of appropriate substituents on the ligands. The Co(II)(4) complexes 1-5 present a remarkable regularity in the disposition of the reduction levels, indicating the ability of the Co(II) sites to transmit electronic interactions between reduced ligands. In general, all investigated molecular systems 1-8 show characteristics typical for multilevel supramolecular electronic devices.
The magnetism of a series of tetranuclear complexes of the [Fe4IIL4]8+ [2x2]-grid-type was investigated, revealing the occurrence of spin transition behavior within this class of compounds. The phenomenon depends directly on the nature of the substituent R(1) in the 2-position on the central pyrimidine group of the ligand L. All Fe(II) ions in compounds with R(1) substituents favoring strong ligand fields (R(1)=H; OH) remain completely in the diamagnetic low-spin state. Only complexes bearing R(1) substituents attenuating the ligand field by steric (and to a lesser extent electronic) effects (R(1)=Me; Ph) exhibit spin transition behavior triggered by temperature. In general, gradual and incomplete transitions without hysteresis were observed for magnetically active complexes. The systems described provide approaches to the development of (supra)molecular spintronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.