We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bølling-Allerød (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO(2) forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.
The climate of the past millennium provides a baseline for understanding the background of natural climate variability upon which current anthropogenic changes are superimposed. As this period also contains high data density from proxy sources (e.g., ice cores, stalagmites, corals, tree rings, and sediments), it provides a unique opportunity for understanding both global and regional-scale climate responses to natural forcing. Toward that end, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850–2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community. This ensemble includes simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters, both together and individually. The CESM-LME thus allows for evaluation of the relative contributions of external forcing and internal variability to changes evident in the paleoclimate data record, as well as providing a longer-term perspective for understanding events in the modern instrumental period. It also constitutes a dynamically consistent framework within which to diagnose mechanisms of regional variability. Results demonstrate an important influence of internal variability on regional responses of the climate system during the past millennium. All the forcings, particularly large volcanic eruptions, are found to be regionally influential during the preindustrial period, while anthropogenic greenhouse gas and aerosol changes dominate the forced variability of the mid- to late twentieth century.
The climate sensitivity of CCSM3 is studied for two past climate forcings, the Last Glacial Maximum (LGM) and the mid-Holocene. The LGM, approximately 21,000 years ago, is a glacial period with large changes in the greenhouse gases, sea level, and ice sheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.