Whereas JUUL electronic cigarettes (ECs) have captured the majority of the EC market, with a large fraction of their sales going to adolescents, little is known about their cytotoxicity and potential effects on health. The purpose of this study was to determine flavor chemical and nicotine concentrations in the eight currently marketed prefilled JUUL EC cartridges ("pods") and to evaluate the cytotoxicity of the different variants (e.g., "Cool Mint" and "Creme Brulee") using in vitro assays. Nicotine and flavor chemicals were analyzed using gas chromatography−mass spectrometry in pod fluid before and after vaping and in the corresponding aerosols. 59 flavor chemicals were identified in JUUL pod fluids, and 3 were >1 mg/mL. Duplicate pods were similar in flavor chemical composition and concentration. Nicotine concentrations (average 60.9 mg/mL) were significantly higher than those of any EC products we have previously analyzed. The transfer efficiency of individual flavor chemicals that were >1 mg/ mL and nicotine from the pod fluid into aerosols was generally 35−80%. All pod fluids were cytotoxic at a 1:10 dilution (10%) in the MTT and neutral red uptake assays when tested with BEAS-2B lung epithelial cells. Most aerosols were cytotoxic in these assays at concentrations between 0.2 and 1.8%. The cytotoxicity of collected aerosol materials was highly correlated with nicotine and ethyl maltol concentrations and moderately to weakly correlated with total flavor chemical concentration and menthol concentration. Our study demonstrates that (1) some JUUL flavor pods have sufficiently high concentrations of flavor chemicals that may make them attractive to youth and (2) the concentrations of nicotine and some flavor chemicals (e.g., ethyl maltol) are high enough to be cytotoxic in acute in vitro assays, emphasizing the need to determine if JUUL products will lead to adverse health effects with chronic use.
We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol (“Menthol Arctic”) and ethyl maltol (“No. 64”) that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health.
We identified the most popular electronic cigarette (EC) refill fluids using an Internet survey and local and online sales information, quantified their flavor chemicals, and evaluated cytotoxicities of the fluids and flavor chemicals. “Berries/Fruits/Citrus” was the most popular EC refill fluid flavor category. Twenty popular EC refill fluids were purchased from local shops, and the ingredient flavor chemicals were identified and quantified by gas chromatography-mass spectrometry. Total flavor chemical concentrations ranged from 0.6 to 27.9 mg/ml, and in 95% of the fluids, total flavor concentration was greater than nicotine concentration. The 20 most popular refill fluids contained 99 quantifiable flavor chemicals; each refill fluid contained 22 to 47 flavor chemicals, most being esters. Some chemicals were found frequently, and several were present in most products. At a 1% concentration, 80% of the refill fluids were cytotoxic in the MTT assay. Six pure standards of the flavor chemicals found at the highest concentrations in the two most cytotoxic refill fluids were effective in the MTT assay, and ethyl maltol, which was in over 50% of the products, was the most cytotoxic. These data show that the cytotoxicity of some popular refill fluids can be attributed to their high concentrations of flavor chemicals.
BackgroundThe Food and Drug Administration (FDA) has recently banned flavours from pod-style electronic cigarettes (e-cigarettes), except for menthol and tobacco. JUUL customers have quickly discovered that flavoured disposable e-cigarettes from other manufacturers, such as Puff, are readily available. Our goal was to compare flavour chemicals, synthetic coolants and pulegone in mint-flavoured/menthol-flavoured e-cigarettes from JUUL and Puff, evaluate the cytotoxicity of the coolants and perform a cancer risk assessment for pulegone, which is present in both JUUL pods and disposable Puff products.MethodsIdentification and quantification of chemicals were performed using gas chromatography/mass spectrometry. Cytotoxicity of the coolants was evaluated with BEAS-2B cells using the MTT 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide assay. The cancer risk of pulegone was calculated using the margin of exposure (MOE).ResultsMenthol was the dominant flavour chemical (>1 mg/mL) in all products from both manufacturers. Minor flavour chemicals (<1 mg/mL) differed in the JUUL and Puff fluids and may produce flavour accents. The concentrations of WS-3 and WS-23 were higher in Puff than in JUUL. WS-23 was cytotoxic in the MTT assay at concentrations 90 times lower than concentrations in Puff fluids. The risk of cancer (MOE<10 000) was greater for mint than for menthol products and greater for Puff than for JUUL.ConclusionsSwitching from flavoured JUUL to Puff e-cigarettes may expose users to increased harm due to the higher levels of WS-23 and pulegone in Puff products. Cancer risk may be reduced in e-cigarettes by using pure menthol rather than mint oils to produce minty-flavoured e-cigarette products.
Flavor chemicals in electronic cigarette fluids (ECs), which may negatively impact human health, have been studied in a limited number of countries/locations. To gain an understanding of how the composition and concentrations of flavor chemicals in ECs are influenced by product sale location, we evaluated refill fluids manufactured by one company (Ritchy LTD) and purchased worldwide.Flavor chemicals were identified and quantified using gas chromatography-mass spectrometry (GC-MS). We then screened the fluids for their effects on cytotoxicity (MTT assay) and proliferation (live-cell imaging) and tested authentic standards of specific flavor chemicals to identify those that were cytotoxic at concentrations found in refill fluids. One hundred twenty-six flavor chemicals were detected in 103 bottles of refill fluid, and their number per/bottle ranged from 1 -50 based on our target list. Two products had none of the flavor chemicals on our target list, nor did they have any non-targeted flavor chemicals. Twenty-eight flavor chemicals were present at concentrations ≥ 1 mg/mL in at least one product, and 6 of these were present at concentrations ≥ 10 mg/mL. The total flavor chemical concentration was ≥ 1 mg/mL in 70% of the refill fluids and ≥ 10 mg/mL in 26%. For sub-brand duplicate bottles purchased in different countries, flavor chemical concentrations were similar and induced similar responses in the in vitro assays (cytotoxicity and cell growth inhibition). The levels of furaneol, benzyl alcohol, ethyl maltol, ethyl vanillin, corylone, and vanillin were significantly correlated with cytotoxicity. The margin of exposure calculations showed that pulegone and estragole levels were high enough in some products to present a non-trivial calculated risk for cancer. Flavor chemical concentrations in refill fluids often exceeded concentrations permitted in other consumer products. These data support the regulation of flavor chemicals in EC products to reduce their potential for producing both cancer and non-cancer toxicological effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.