Integrated pharmacokinetic/pharmacodynamic modeling showed that the usually prescribed dosage regimens of fentanyl in neonates may not always provide the optimum degree of sedation. The model could be used in optimal design of clinical trials for this vulnerable population. Prospective clinical testing is the reasonable next step.
In this study, a selective and sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method requiring low sample volume (≤100 μL) was developed and validated for the quantitative determination of the opioid drug fentanyl in plasma and cerebrospinal fluid (CSF). A protein precipitation extraction with acetonitrile was used for plasma samples whereas CSF samples were injected directly on the HPLC column. Fentanyl and (13) C6 -fentanyl (Internal Standard) were analyzed in an electrospray ionization source in positive mode, with multiple reaction monitoring (MRM) of the transitions m/z 337.0/188.0 and m/z 337.0/105.0 for quantification and confirmation of fentanyl, and m/z 343.0/188.0 for (13) C6 -fentanyl. The respective lowest limits of quantification for plasma and CSF were 0.2 and 0.25 ng/mL. Intra- and inter-assay precision and accuracy did not exceed 15%, in accordance with bioanalytical validation guidelines. The described analytical method was proven to be robust and was successfully applied to the determination of fentanyl in plasma and CSF samples from a pharmacokinetic and pharmacodynamic study in newborn piglets receiving intravenous fentanyl (5 µg/kg bolus immediately followed by a 90-min infusion of 3 µg/kg/h).
BackgroundFentanyl is widely used off-label in NICU. Our aim was to investigate its cerebral, cardiovascular and pulmonary effects as well as pharmacokinetics in an experimental model for neonates.MethodsFentanyl (5 µg/kg bolus immediately followed by a 90 minute infusion of 3 µg/kg/h) was administered to six mechanically ventilated newborn piglets. Cardiovascular, ventilation, pulmonary and oxygenation indexes as well as brain activity were monitored from T = 0 up to the end of experiments (T = 225–300 min). Also plasma samples for quantification of fentanyl were drawn.ResultsA “reliable degree of sedation” was observed up to T = 210–240 min, consistent with the selected dosing regimen and the observed fentanyl plasma levels. Unlike cardiovascular parameters, which were unmodified except for an increasing trend in heart rate, some of the ventilation and oxygenation indexes as well as brain activity were significantly altered. The pulmonary and brain effects of fentanyl were mostly recovered from T = 210 min to the end of experiment.ConclusionThe newborn piglet was shown to be a suitable experimental model for studying fentanyl disposition as well as respiratory and cardiovascular effects in human neonates. Therefore, it could be extremely useful for further investigating the drug behaviour under pathophysiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.