Summary• In a comparative study of 42 rainforest tree species we examined relationships amongst wood traits, diameter growth and survival of large trees in the field, and shade tolerance and adult stature of the species.• The species show two orthogonal axes of trait variation: a primary axis related to the vessel size-number trade-off (reflecting investment in hydraulic conductance vs hydraulic safety) and a secondary axis related to investment in parenchyma vs fibres (storage vs strength). Across species, growth rate was positively related to vessel diameter and potential specific hydraulic conductance (K p ), and negatively related to wood density. Survival rate was only positively related to wood density.• Light-demanding species were characterized by low wood and vessel density and wide vessels. Tall species were characterized by wide vessels with low density and large K p . Hydraulic traits were more closely associated with adult stature than with light demand, possibly because tall canopy species experience more drought stress and face a higher cavitation risk.• Vessel traits affect growth and wood density affects growth and survival of large trees in the field. Vessel traits and wood density are therefore important components of the performance and life history strategies of tropical tree species.
Summary Parenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large‐scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions.Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP).We found a 29‐fold variation in RAP fraction, which was more strongly related to temperature than with precipitation. Stem succulents had the highest RAP values (mean ± SD: 70.2 ± 22.0%), followed by lianas (50.1 ± 16.3%), angiosperm trees and shrubs (26.3 ± 12.4%), and conifers (7.6 ± 2.6%). Differences in RAP fraction between temperate and tropical angiosperm trees (21.1 ± 7.9% vs 36.2 ± 13.4%, respectively) are due to differences in the AP fraction, which is typically three times higher in tropical than in temperate trees, but not in RP fraction.Our results illustrate that both temperature and growth form are important drivers of RAP fractions. These findings should help pave the way to better understand the various functions of RAP in plants.
In an old‐growth tropical wet forest at La Selva, Costa Rica, we combined radiocarbon (14C) dating and tree‐ring analysis to estimate the ages of large trees of canopy and emergent species spanning a broad range of wood densities and growth rates. We collected samples from the trunks of 29 fallen, dead individuals. We found that all eight sampled species formed visible growth rings, which varied considerably in distinctiveness. For five of the six species for which we combined wood anatomical studies with 14C‐dates (ring ages), the analyses demonstrated that growth rings were of annual formation. The oldest tree we found by direct ring counting was a Hymenolobium mesoamericanum Lima (Papilionaceae) specimen, with an age of ca. 530 years at the time of death. All other sampled individuals, including very large trees of slow‐growing species, had died at ages between 200 and 300 years. These results show that, even in an everwet tropical rain forest, tree growth of many species can be rhythmic, with an annual periodicity. This study thus raises the possibility of extending tree‐ring analyses throughout the tropical forest types lacking a strong dry season or annual flooding. Our findings and similar measurements from other tropical forests indicate that the maximum ages of tropical emergent trees are unlikely to be much greater than 600 years, and that these trees often die earlier from various natural causes.
Tree-ring studies contribute worldwide to the understanding of climate and its relation to tree growth. Long tree-ring chronologies serve as climate proxies for the reconstruction of past, pre-instrument climate and its recent change. In tropical regions, the availability of exactly dated tree-ring chronologies is limited. The dendroclimatic potential of two dominant species from dry forests in northern Namibia was examined in the study presented in this paper. Both species (Burkea africana Hook and Pterocarpus angolensis DC) were sampled at two sites (ca. 900 km apart), and the response to several climatic variables, including ENSO indices, is studied. All specimens showed distinct growth rings and crossdating between radii was successful for all trees. Speciesspecific mean curves were built for both sites. The mean curves of different species of the same site synchronised significantly, allowing the construction of a site-specific chronology. Synchronisation between sites was not possible, but spectral analysis of the chronologies implied that both show similar long-term (6.7 year) oscillation patterns. B. africana is more sensitive to rainfall variation than P. angolensis at both sites. Growth response to rainfall was positive, but a time-lag in the reaction occurred between the sites, corresponding to the time-lag of the beginning of the rainy season. Air temperature showed a negative correlation with stem increment at both sites. The response at the westernmost site to two ENSO indices indicates a tree growth decrease during El Niaeo years, which are generally dry in southern Africa.
Parenchyma represents a critically important living tissue in the sapwood of the secondary xylem of woody angiosperms. Considering various interactions between parenchyma and water transporting vessels, we hypothesize a structure-function relationship between both cell types.Through a generalized additive mixed model approach based on 2,332 woody angiosperm species derived from the literature, we explored the relationship between the proportion and spatial distribution of ray and axial parenchyma and vessel size, while controlling for maximum plant height and a range of climatic factors. When factoring in maximum plant height, we found that with increasing mean annual temperatures, mean vessel diameter showed a positive correlation with axial parenchyma proportion and arrangement, but not for ray parenchyma. Species with a high axial parenchyma tissue fraction tend to have wide vessels, with most of the parenchyma packed around vessels, whereas species with small diameter vessels show a reduced amount of axial parenchyma that is not directly connected to vessels. This finding provides evidence for independent functions of axial parenchyma and ray parenchyma in large vesselled species and further supports a strong role for axial parenchyma in long-distance xylem water transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.