Temperature is an important influencer of homeostatic comfort for humans, and its influence extends beyond life-preservation functions into cognitive and emotional effects. To augment metabolic processes in cold climates, many on-body heating solutions are currently available in the commercial market, ranging from chemical heat packs to electrically heated accessories and clothing. These products typically prioritize heating the body core in extreme conditions. By contrast, the experience of thermal comfort in the band around homeostatic comfort temperatures is much more strongly driven by experience of temperature in the body’s periphery: the hands, feet, and face [1]. Thermal sensitivity is highest in the distal extremities and has been established as the best correlate of overall perception of thermal comfort [2], [3]. In the medical context, this is especially significant in treating vasospastic disorders such as Raynaud’s Syndrome, where a spastic vascular response in peripheral vessels results in an over-reaction to cold temperatures proximal to the thermoneutral zone [4].
Supplemental heating systems for the distal extremities often require a tradeoff between wearability and thermal comfort. Textile-based thermal actuation helps manage this tradeoff by increasing comfort of on-body systems. However, textile-based thermal actuation also presents important limitations in the form of current requirements, control structures, and thermal flux afforded. Further, on-body active thermal control is affected by three intersecting thermal systems: the environment, the human body, and the active heating system. Here, we present lessons learned from iterative development of textile-based wearable systems (V1, V2) designed to heat the distal extremities. Experimental characterization of textile actuator power/temperature relationships and limits; actuator performance in cool ambient temperatures and in on-body conditions; and efficacy of closed-loop duty cycle control of actuated skin temperature are presented, and implications of these characteristics for garment system design are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.