The adsorption of HSA onto CHI/ALG multilayer assemblies was assessed in situ using QCM-D. It was found that the behavior of HSA on biomaterials surface can be tuned by adjusting parameters of the polyelectrolyte system such as pH, layer number, crosslinker and polymer terminal layer. Our results confirmed the key role of electrostatic interactions during HSA adsorption, since oppositely charged surfaces were more effective in promoting protein adhesion. QCM-D data revealed that crosslinking (CHI/ALG)(5) CHI films allows HSA to become adsorbed in physiological conditions. Our results suggested that the biological potential of biopolymers and the mild conditions of the LbL technique turn these natural nanoassemblies into a suitable choice to be used as pH-sensitive coatings.
The molecular mobility of condensed matter confined to nanometer dimensions can be dramatically changed from those of the bulk state in such a way that, when the guest is a drug, it can be advantageously used in pharmaceutical applications. We show by dielectric relaxation spectroscopy that the molecular mobility of the important ibuprofen drug embedded in nanoporous SBA-15 is significantly influenced by the confinement. An evidence of the existence of two families of molecules with different molecular mobilities is provided and investigated in their temperature dependence. One family is due to molecules close to the pores' center with a higher mobility compared with the bulk at low temperatures, and another family with slower dynamics originated from molecules interacting with the pore walls. The work reports the simultaneous manifestation of true confinement and surface effects in this nanostructured silica host for a drug. For future applications in drug delivery systems, the dynamics determined by the guest−host interplay and the one of the bulklike molecules can be tuned to achieve a desired release profile.
A new family of biodegradable polymer/bioactive glass (BG) composite materials has emerged based on the availability of nano-sized bioactive particles. Such novel biocomposites can have enhanced performance, in terms of mechanical properties and bioactivity, and they can be designed to be used in bone regeneration approaches. In this work, membranes of chitosan (CTS) and chitosan with bioactive glass (BG) both micron and nano sized particles (CTS/μBG, CTS/nBG, respectively) were prepared by solvent casting. Microstructural and mechanical properties were evaluated in order to compare the effects of the incorporation of micro (μBG) and nano (nBG) particles in the chitosan matrix. In vitro bioactivity tests were performed to characterize the apatite layer that is formed on the surface of the material after being immersed in simulated body fluid (SBF). The biomineralization process on the biomaterials was also followed using non-conventional dynamic mechanical analysis (DMA), both online and offline. In such DMA experiments, the change in the storage modulus, E', and the loss factor, tan δ, were measured as a function of the immersion time in SBF. The results demonstrated that CTS/nBG membranes possess enhanced mechanical properties and higher bioactivity in comparison with the CTS/μBG membranes. Such results suggest the potential of nBG for the development of bioactive composites for bone regeneration applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.