Advancements in mobile technology and computing have fostered the collection of a large number of civic datasets that capture the pulse of urban life. Furthermore, the open government and data initiative has led many local authorities to make these datasets publicly available, hoping to drive innovation that will further improve the quality of life for the city-dwellers. In this paper, we develop a novel application that utilizes crime data to provide safe urban navigation. Specifically, using crime data from Chicago and Philadelphia we develop a risk model for their street urban network, which allows us to estimate the relative probability of a crime on any road segment. Given such model we define two variants of the SAFEPATHS problem where the goal is to find a short and low-risk path between a source and a destination location. Since both the length and the risk of the path are equally important but cannot be combined into a single objective, we approach the urban-navigation problem as a biobjective shortest path problem. Our algorithms aim to output a small set of paths that provide tradeoffs between distance and safety. Our experiments demonstrate the efficacy of our algorithms and their practical applicability.
Redescription mining is a powerful data analysis tool that is used to find multiple descriptions of the same entities. Consider geographical regions as an example. They can be characterized by the fauna that inhabits them on one hand and by their meteorological conditions on the other hand. Finding such redescriptors, a task known as niche‐finding, is of much importance in biology. Current redescription mining methods cannot handle other than Boolean data. This restricts the range of possible applications or makes discretization a pre‐requisite, entailing a possibly harmful loss of information. In niche‐finding, while the fauna can be naturally represented using a Boolean presence/absence data, the weather cannot. In this paper, we extend redescription mining to categorical and real‐valued data with possibly missing values using a surprisingly simple and efficient approach. We provide extensive experimental evaluation to study the behavior of the proposed algorithm. Furthermore, we show the statistical significance of our results using recent innovations on randomization methods. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2012
Finding dense subgraphs is an important problem in graph mining and has many practical applications. At the same time, while large real-world networks are known to have many communities that are not well-separated, the majority of the existing work focuses on the problem of finding a single densest subgraph. Hence, it is natural to consider the question of finding the top-k densest subgraphs. One major challenge in addressing this question is how to handle overlaps: eliminating overlaps completely is one option, but this may lead to extracting subgraphs not as dense as it would be possible by allowing a limited amount of overlap. Furthermore, overlaps are desirable as in most realworld graphs there are vertices that belong to more than one community, and thus, to more than one densest subgraph. In this paper we study the problem of finding top-k overlapping densest subgraphs, and we present a new approach that improves over the existing techniques, both in theory and practice. First, we reformulate the problem definition in a way that we are able to obtain an algorithm with constant-factor approximation guarantee. Our approach relies on using techniques for solving the max-sum diversification problem, which however, we need to extend in order to make them applicable to our setting. Second, we evaluate our algorithm on a collection of benchmark datasets and show that it convincingly outperforms the previous methods, both in terms of quality and efficiency.
We present a new approach for the problem of finding overlapping communities in graphs and social networks. Our approach consists of a novel problem definition and three accompanying algorithms. We are particularly interested in graphs that have labels on their vertices, although our methods are also applicable to graphs with no labels. Our goal is to find k communities so that the total edge density over all k communities is maximized. In the case of labeled graphs, we require that each community is succinctly described by a set of labels. This requirement provides a better understanding for the discovered communities. The proposed problem formulation leads to the discovery of vertex-overlapping and dense communities that cover as many graph edges as possible. We capture these properties with a simple objective function, which we solve by adapting efficient approximation algorithms for the generalized maximum-coverage problem and the densest-subgraph problem. Our proposed algorithm is a generic greedy scheme. We experiment with three variants of the scheme, obtained by varying the greedy step of finding a dense subgraph. We validate our algorithms by comparing with other state-of-the-art community-detection methods on a variety of performance measures. Our experiments confirm that our algorithms achieve results of high quality in terms of the reported measures, and are practical in terms of performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.