Membranes are important sites for the regulation of metabolic functions because they contain transport molecules, which often catalyze the first step in a pathway, and signal-transduction components, which allow the cell to communicate with the environment. Given the catalytic importance of transport proteins and their role in membrane stability, it is possible that oligomerization is used to regulate their function. This review evaluates knowledge of the functions that are associated with the oligomeric organization of secondary transport proteins, which are a major class of solute-translocation systems in all living species.
The Major Facilitator Superfamily lactose transport protein (LacS) undergoes reversible self-association in the detergent-solubilized state, and is present in the membrane as a dimer. We determined the functional unit for proton motive force (Dp)-driven lactose uptake and lactose/methyl-b-D-galactopyranoside equilibrium exchange in a proteoliposomal system in which a single cysteine mutant, LacS-C67, defective in Dp-driven uptake, was co-reconstituted with fully functional cysteine-less protein, LacS-cl. From the quadratic relationship between the uptake activity and the ratio of LacS-C67/LacS-cl, we conclude that the dimeric state of LacS is required for Dp-driven uptake. N-ethylmaleimide (NEM) treatment of proteoliposomes abolished the LacS-C67 exchange activity but left the LacS-cl unaffected. After NEM treatment, the exchange activity decreased linearly with increasing ratios of LacS-C67/LacS-cl, suggesting that the monomeric state of LacS is suf®cient for this mode of transport. We propose that the two subunits of LacS are functionally coupled in the step associated with conformational reorientation of the empty binding site, a step unique for Dp-driven uptake.
The accumulation of quaternary ammonium compounds inLactobacillus plantarum is mediated via a single transport system with a high affinity for glycine betaine (apparentKm
of 18 μM) and carnitine and a low affinity for proline (apparent Km
of 950 μM) and other analogues. Mutants defective in the uptake of glycine betaine were generated by UV irradiation and selected on the basis of resistance to dehydroproline (DHP), a toxic proline analogue. Three independent DHP-resistant mutants showed reduced glycine betaine uptake rates and accumulation levels but behaved similarly to the wild type in terms of direct activation of uptake by high-osmolality conditions. Kinetic analysis of glycine betaine uptake and efflux in the wild-type and mutant cells is consistent with one uptake system for quaternary ammonium compounds in L. plantarum and a separate system(s) for their excretion. The mechanism of osmotic activation of the quaternary ammonium compound transport system (QacT) was studied. It was observed that the uptake rates were inhibited by the presence of internal substrate. Upon raising of the medium osmolality, the QacT system was rapidly activated (increase in maximal velocity) through a diminished inhibition by trans substrate as well as an effect that is independent of intracellular substrate. We also studied the effects of the cationic amphipath chlorpromazine, which inserts into the cytoplasmic membrane and thereby influences the uptake and efflux of glycine betaine. The results provide further evidence for the notion that the rapid efflux of glycine betaine upon osmotic downshock is mediated by a channel protein that is responding to membrane stretch or tension. The activation of QacT upon osmotic upshock seems to be brought about by a turgor-related parameter other than membrane stretch or tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.