We demonstrate for the first time the feasibility of functional recovery after freezing and thawing of the isolated rat heart while maintaining structural integrity and viability.
Exposure to air pollution has been associated with acute myocardial ischemia, impaired myocardrial function, and ST-segment depression. Particulate matter (PM)-associated metals, especially vanadium and nickel, have been implicated in observed cardiovascular impairments. We aimed to assess the effect of single intratracheal pulmonary exposure to vanadium-rich respirable oil combustion PM (HP-10) on the intrinsic myocardial ischemic tolerance and mitochondrial integrity in rats. The authors subjected isolated heart tissue slices derived from saline or PM-exposed rats to low glucose low oxygen induced ischemia followed by oxygenated condition with glucose supplementation. Mitochondrial structural integrity was determined by TEM (transmission electron microscopy) and functionality by the 3-(4, 5 dimethylthiazol-2yl)-2, 5 diphenyltetrazolium bromide (MTT) assay. Rats exposed to PM exhibited no apparent inhibition of mitochondrial dehydrogenase activity in oxygenated conditions at 24 or 48 hr post-PM exposure. However, in conditions of simulated ischemia/reoxygenation, these heart slices showed a delayed but consistent and significant decrease in dehydrogenase activity compared to controls at 48 hr after exposure to PM. Electron microscopy revealed significant myocardial mitochondrial injury upon exposure to PM characterized by mitochondrial swelling and fusion. The authors conclude that exposure to soluble vanadium-rich PM induces mitochondrial functional impairment and structural abnormality, which compromises mitochondrial respiration and results in decreased tolerance to ischemia/reoxygenation in rats.
The effect of Bis(2-chloroethoxy)methane (CEM) on myocardial response to ischemia was tested in rats. CEM was dermally applied for 3 days to F344/N male rats, at 0, 100, 400, or 600 mg/kg/d. Subsequently, left ventricular sections were prepared from each rat heart. Part of the sections from each heart were exposed to 90 minutes of simulated ischemia, followed by 90 minutes of reoxygenation. The rest of the sections were continuously oxygenated. Mitochondrial activity was assessed in the sections by the MTT colorimetric assay, reflecting dehydrogenases redox activity. Myocardial toxicity occurred in response to 400 and 600 mg/kg, characterized by myofiber vacuoles, necrosis, and mononuclear infiltrates. The latter dose was lethal. In sections from rats treated with 400 mg/kg CEM, redox activity was decreased by 21% (p<0.01) in oxygenated conditions and by 45% (p<0.01) in ischemia-reoxygenation, compared to controls. Hearts of rats treated with 100 mg/kg/d CEM showed normal histology. Their mitochondrial activity did not differ from that of untreated rat hearts in oxygenated conditions. However, in ischemia-reoxygenation, their redox activity was significantly lower (by 46%, p<0.01) than that of untreated rat hearts. These results demonstrate that subtoxic dosage of a cardiotoxic agent may cause occult cardiotoxicity, reflected by impaired response to ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.