Various magnetic resonance (MR) techniques are used to study the pathological evolution of demyelinating diseases, such as multiple sclerosis (MS). However, few studies have validated MR derived measurements with histopathology. Here, we determine the correlation of myelin water imaging, an MR measure of myelin content, with quantitative histopathologic measures of myelin density. The multi-component T2 distribution of water was determined from 25 formalin-fixed MS brain samples using a multi-echo T2 relaxation MR experiment. The myelin water fraction (MWF), defined as T2 signal below 30 milliseconds divided by the total signal, was determined for various regions of interest and compared to Luxol fast blue (myelin stain) mean optical density (OD) for each sample. MWF had a strong correlation with myelin stain [mean (range) R2 = 0.67 (0.45-0.92)], validating MWF as a measure of myelin density. This quantitative technique has many practical applications for the in vivo monitoring of demyelination and remyelination in a variety of disorders of myelin.
In formalin-fixed MS brains the short-T2 component of the T2 relaxation distribution corresponds to the anatomic distribution of myelin. Chronic, silent demyelinated MS plaques show absence of the short-T2 component signal. These results support the hypothesis that the short-T2 component originates from water related to myelin.-1510
Although multiple sclerosis (MS) lesions have been studied extensively using histology and magnetic resonance imaging (MRI), little is known about diffusely abnormal white matter (DAWM). Diffusely abnormal white matter, regions with reduced mild MRI hyperintensity and ill-defined boundaries, show reduced myelin water fraction, and decreased Luxol fast blue staining of myelin phospholipids, with relative preservation of myelin basic protein and 2',3'-cyclic-nucleotide 3'-phosphohydrolase. Because DAWM may be important in MS disability and progression, further histologic characterization is warranted. The MRI data were collected on 14 formalin-fixed MS brain samples that were then stained for myelin phospholipids, myelin proteins, astrocytes and axons. Diffusely abnormal white matter showed reduced myelin water fraction (-30%, p < 0.05 for 13 samples). Myelin phospholipids showed the most dramatic and consistent histologic reductions in staining optical density (-29% Luxol fast blue and -24% Weil's, p < 0.05 for 13 and 14 samples,respectively) with lesser myelin protein involvement (-11% myelin-associated glycoprotein, -10% myelin basic protein, -8% myelin-oligodendrocyte glycoprotein, -7% proteolipid protein, -5% 2',3'-cyclic-nucleotide 3'-phosphohydrolase, p < 0.05 for 3, 3, 1, 2, and 3 samples, respectively). Axonal involvement was intermediate. Diffusely abnormal white matter lipid and protein reductions occurred independently. These findings suggest a primary lipid abnormality in DAWM that exceeds protein loss and is accompanied by axonal degeneration. These phenomena may be important in MS pathogenesis and disease progression, which is prominent in individuals with DAWM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.