Abstract.Bagging is an ensemble method proposed to improve the predictive performance of learning algorithms, being specially effective when applied to unstable predictors. It is based on the aggregation of a certain number of prediction models, each one generated from a bootstrap sample of the available training set. We introduce an alternative method for bagging classification models, motivated by the reduced bootstrap methodology, where the generated bootstrap samples are forced to have a number of distinct original observations between two values k 1 and k 2 . Five choices for k 1 and k 2 are considered, and the five resulting models are empirically studied and compared with bagging on three real data sets, employing classification trees and neural networks as the base learners. This comparison reveals for this reduced bagging technique a trend to diminish the mean and the variance of the error rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.