The link between extrinsic signaling, progenitor cell specification and neuronal subtype identity is central to the developmental organization of the vertebrate central nervous system. In the hindbrain and spinal cord, distinctions in the rostrocaudal identity of progenitor cells are associated with the generation of different motor neuron subtypes. Two fundamental classes of motor neurons, those with dorsal (dMN) and ventral (vMN) exit points, are generated over largely non-overlapping rostrocaudal domains of the caudal neural tube. Cdx and Hox genes are important determinants of the rostrocaudal identity of neural progenitor cells, but the link between early patterning signals, neural Cdx and Hox gene expression, and the generation of dMN and vMN subtypes, is unclear. Using an in vitro assay of neural differentiation, we provide evidence that an early Wnt-based program is required to interact with a later retinoic acid- and fibroblast growth factor–mediated mechanism to generate a pattern of Cdx and Hox profiles characteristic of hindbrain and spinal cord progenitor cells that prefigure the generation of vMNs and dMNs.
SUMMARYThe olfactory sensory epithelium and the respiratory epithelium are derived from the olfactory placode. However, the molecular mechanisms regulating the differential specification of the sensory and the respiratory epithelium have remained undefined. To address this issue, we first identified Msx1/2 and Id3 as markers for respiratory epithelial cells by performing quail chick transplantation studies. Next, we established chick explant and intact chick embryo assays of sensory/respiratory epithelial cell differentiation and analyzed two mice mutants deleted of Bmpr1a;Bmpr1b or Fgfr1;Fgfr2 in the olfactory placode. In this study, we provide evidence that in both chick and mouse, Bmp signals promote respiratory epithelial character, whereas Fgf signals are required for the generation of sensory epithelial cells. Moreover, olfactory placodal cells can switch between sensory and respiratory epithelial cell fates in response to Fgf and Bmp activity, respectively. Our results provide evidence that Fgf activity suppresses and restricts the ability of Bmp signals to induce respiratory cell fate in the nasal epithelium. In addition, we show that in both chick and mouse the lack of Bmp or Fgf activity results in disturbed placodal invagination; however, the fate of cells in the remaining olfactory epithelium is independent of morphological movements related to invagination. In summary, we present a conserved mechanism in amniotes in which Bmp and Fgf signals act in an opposing manner to regulate the respiratory versus sensory epithelial cell fate decision.
The pancreas consists of two components, which exert distinct homeostatic function, an endocrine part that secretes hormones including insulin and an exocrine part that produces digestive enzymes. In mouse, one of the factors essential for development of the pancreas is the Mnx-class homeobox transcription factor Hb9. Genetic studies showed that Hb9 is required for both initial morphogenesis of the pancreas as well as subsequent differentiation of insulin-producing beta-cells [Nat. Genet. 23 (1999) 71; Nat. Genet. 23 (1999) 67]. To get a better understanding of what role mnx genes play in pancreas development, we isolated and characterized mnx genes in the model organism zebrafish. We found one gene with homology to hb9 orthologs and two that display homology to the related chicken mnr2. Embryonic expression of the zebrafish mnx genes is very dynamic and is detected in derivatives of all three germ layers. Endodermal expression of hb9 takes place in the early gut endoderm and, later, in the endocrine pancreas and the swim bladder. In addition, one of the mnr2 genes, mnr2a, shows expression in an endodermal cell population that is initially intermingled with insulin-positive cells and that later becomes restricted to the exocrine pancreas. In knockdown studies using antisense morpholinos, we show that hb9 is essential for differentiation of the insulin-producing beta-cells but unlike mouse Hb9 is not needed for early morphogenesis of the pancreas. In contrast, mnr2a is required during late morphogenesis of the exocrine pancreas. In summary, our data suggest a tissue-specific mnx-expression code in the zebrafish pancreas and they reveal a novel role of an mnr2-related gene.
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement.
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.