Despite the current standard of multimodal management, glioblastoma (GBM) inevitably recurs and effective therapy is not available for recurrent disease. A subset of tumor cells with stem-like properties, termed GBM stem-like cells (GSCs), are considered to play a role in tumor relapse. Although oncolytic herpes simplex virus (oHSV) is a promising therapeutic for GBM, its efficacy against recurrent GBM is incompletely characterized. Transforming growth factor beta (TGF-β) plays vital roles in maintaining GSC stemness and GBM pathogenesis. We hypothesized that oHSV and TGF-β inhibitors would synergistically exert anti-tumor effects for recurrent GBM. Here we established a panel of patient-derived recurrent tumor models from GBMs that relapsed after post-surgical radiation and chemotherapy, based on GSC-enriched tumor sphere cultures. These GSCs are resistant to the standard-of-care temozolomide but susceptible to oHSVs G47Δ and MG18L. Inhibition of TGF-β receptor kinase with selective targeted small molecules reduced clonogenic sphere formation in all tested recurrent GSCs. The combination of oHSV and TGF-βR inhibitor was synergistic in killing recurrent GSCs through, in part, an inhibitor-induced JNK-MAPK blockade and increase in oHSV replication. In vivo, systemic treatment with TGF-βR inhibitor greatly enhanced the anti-tumor effects of single intratumoral oHSV injections, resulting in cures in 60% of mice bearing orthotopic recurrent GBM. These results reveal a novel synergistic interaction of oHSV therapy and TGF-β signaling blockade, and warrant further investigations aimed at clinical translation of this combination strategy for GBM patients.
INTRODUCTION: Recent evidence suggests that glioblastoma is driven by a subset of tumor initiating (TI) cells characterized by their capacity to form tumors in xenograft models and self-renew in vitro. These TI cells share many properties of neural stem/progenitor cells, including the expression of certain cell surface markers. With serial passage, many cells lose their capacity to TI. The transition between TI-proficient and -deficient states remains poorly understood. METHODS AND RESULTS: There are two theoretic models for the maintenance of TI states. In the "elite" model, TI activity is restricted to a predetermined subpopulation of cells. The alternative "stochastic" model suggests that any tumor cell has a finite chance of acquiring TI capacity through random fluctuations in cell physiology. To address this issue, we examined the TI capacity of distinct subclones isolated from a distinct glioblastoma line as well as the TI capacity of single cells derived from each distinct clone. We found that only a subset of subclones from a single glioblastoma line displayed capacity for TI, suggestive of the elite model. However, single cells derived from any single subclone exhibited a wide range of TI capacity, suggesting a stochastic component to this process. Transcriptome profiling of the subclones of differing TI revealed a gene signature associated with TI capacity. Analysis of this signature showed enrichment for genes regulated by c-Myc. Indeed, clones with increased TI capacity tend to harbor increased c-Myc expression. Additionally, over-expression of c-myc increased the TI capacity of glioblastoma cells in xenograft models and led to the formation of intracranial tumor in an Ink4a/ARF null transgenic murine model. CONCLUSION: Our results are most consistent with a threshold model in which TI states in glioblastomas are driven by expression levels of critical factors such as c-Myc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.