This study explored in the 50 m races of the four swimming strokes the performance parameters and/or technical variables that determined the differences between swimmers who reach the finals and those who do not. A total of 322 performances retrieved from the 2021 Budapest European championships were the focus of this study. The results of the performances achieved during the finals compared to the heats showed that the best swimmers did not excel during the heats, as a significant progression of performance was observed in most of the strokes as the competition progressed. Specifically, combining men and women, the swimmers had in freestyle a mean coefficient of variation (CV) of ∼0.6%, with a mean range of performance improvement (∆%) of ∆ = ∼0.7%; in breaststroke a mean CV of ∼0.5% and ∆ = −0.2%; in backstroke a mean CV of ∼0.5% and ∆ = −0.6%, and; in butterfly a mean CV of ∼0.7% and ∆ = −0.9%. For all strokes, it was a reduction of the underwater phase with the aim of increasing its speed. However, this result was not always transferred to the final performance. In any case, most of the swimmers tried to make improvements from the start of the race up to 15 m. Furthermore, the swimmers generated an overall increase in stroke rate as the rounds progressed. However, a decrease in stroke length resulted and, this balance appeared to be of little benefit to performance.
BACKGROUNDː The swimming community has shown considerable interest in using dryland warm-ups as a method of impacting performance. This study compared the effects of high-resistance pullover and swimming warm-up in semi-tethered resisted swimming. METHODSː An incremental-load semi-tethered swimming test was individually administered in 20 national-competitive swimmers to determine the load maximizing swimming power. In different sessions, participants tested such a load 6 min after a swimming warm-up (SWU) or a dry-land warm-up (DLWU: 3 pullover reps at 85% of the one-repetition maximum). Kinetic variables (velocity, force, acceleration, impulse, power rate of force development (RFD) and intra-cycle variation), were obtained with a linear encoder through trapezoidal integration regarding time. Kinematic variables (distance, time, stroke-rate and stroke-length), were obtained by video recordings. The differences between protocols were observed by paired-samples T-test (ANOVA). Pearson's coefficient explored correlations between kinetics and kinematics variables; significance was set at P<0.05. RESULTSː DLWU increased RFD (34.52±16.55 vs. 31.29±13.70 N/s; Δ=9.35%) and stroke-rate (64.70±9.84 vs. 61.56 ± 7.07 Hz; Δ=5.10%) compared to SWU, but decreased velocity, force, acceleration, impulse and power. During the incremental-load test velocity and power were higher than obtained after SWU (1.21±0.14 vs. 1.17±0.12 m/s; Δ=3.06%), (51.38±14.93 vs. 49.98±15.40 W; Δ=2.72%), suggesting enhancements prompted by the test itself. Correlations between stroke-length with impulse (r=0.76) and power (r=0.75) associated kinetics with kinematics. CONCLUSIONSː Potentiation responses were present after the dry-land warm-up. However, swimmers may benefit more from submaximal prolonged conditioning activities such as resisted swimming rather than high-resistance dry-land sets to obtain performance enhancements.
This study aimed to compare three swimming conditions in a swimming flume with water at 26 ℃ (using swimsuit) and 18 ℃ (randomly with swimsuit and wetsuit). Seventeen swimmers (32.4±14.7 years old, 175.6±0.06 cm height, and 70.4±9.8 kg body mass) performed three bouts until exhaustion at a 400-m front crawl pace (24 h intervals). ANOVA repeated measures compared the experimental conditions. Swimming at 26 ℃ with swimsuit evidenced a higher metabolic demand (total energy expenditure; (E)), comparing to 18 ℃ swimsuit (p=0.05) and with 18 ℃ wetsuit (p=0.04). The 26 ℃ swimsuit condition presented higher peak oxygen uptake (VO2peak), blood lactate concentrations ([La-]peak), rate of perceived exertion (RPE), maximal heart rate (HRmax), anaerobic lactic energy (AnL), E, energy cost (C), V̇O2 amplitude (Ap), and stroke rate (SR), but lower stroke length (SL) and stroke index (SI) than 18 ℃ wetsuit. The 18 ℃ swimsuit condition (comparing to wetsuit) lead to higher V̇O2peak, [La-]peak, HRmax, E, C, Ap, and SR but lower SL and SI. Swimming at aerobic power intensity with swim and wetsuit at 18 ℃ does not induce physiologic and biomechanical disadvantages compared to 26 ℃. The results suggested that the use of wetsuit might increase performance at 18 ℃ water temperature for competitive master swimmers. Its use is thus recommended in open water swimming competitions when the water temperature is 18–20 ℃.
Based on Self-Determination Theory, this research aimed to examine la influence of Sport Education on basic psychological need satisfaction in the sport teaching-learning process that takes place in Physical Education. The participants were 44 high school students (22 men and 22 women; Mage = 16.32, SDage = 0.57) and 2 Physical Education pre-service teachers. The design was a quasi-experimental study with, a priori, non-equivalent control group using pre- and post- intervention measures and intra- and inter- analyses. The intervention consisted of 12 basketball sessions both for the experimental group (n = 22), which developed Sport Education, and for the control group (n = 22), which developed the traditional teaching. The results showed that Sport Education significantly improved the levels of autonomy, competence and relatedness need satisfaction in the inter-group analysis and in the intra-group analysis. In its conclusion, the suitability of Sport Education to contribute developing students’ basic psychological need satisfaction in the sport teaching-learning process in Physical Education was indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.