Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.
Ice storms are an infrequent but significant hazard in the U.S southern Great Plains. Common synoptic profiles for freezing precipitation reveal advection of low-level warm moist air from the Gulf of Mexico (GOM), above a shallow Arctic air mass ahead of a midlevel trough. Because the GOM is the proximal basin and major moisture source, this study investigates impacts of varying GOM sea surface temperature (SST) on the thermodynamic evolution of a winter storm that occurred during 28–30 January 2010, with particular emphasis on the modulation of freezing precipitation. A high-resolution, nested ARW sensitivity study with a 3.3-km inner domain is performed, using six representations of GOM SST, including control, climatological mean, uniform ±2°C from control, and physically constrained upper- and lower-bound basin-average anomalies from a 30-yr dataset. The simulations reveal discernable impacts of SST on the warm-layer inversion, precipitation intensity, and low-level dynamics. Whereas total precipitation for the storm increased monotonically with SST, the freezing-precipitation response was more varied and nonlinear, with the greatest accumulation decreases occurring for the coolest SST perturbation, particularly at moderate precipitation rates. Enhanced precipitation and warm-layer intensity promoted by warmer SST were offset for the highest perturbations by deepening of the weak 850-hPa low circulation and faster eastward progression associated with enhanced baroclinicity and diabatic generation of potential vorticity. Air-parcel trajectories terminating within the freezing-precipitation region were examined to identify airmass sources and modification. These results suggest that GOM SST can affect the severity of concurrent ice-storm events in the southern Great Plains, with warmer basin SST potentially exacerbating the risk of damaging ice accumulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.