Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.
ROCK2 is a protein involved in the restructuring of the cytoskeleton in cell adhesion and contractibility processes. miR-138-5p and miR-455-3p regulate Rock2 expression, cell proliferation, migration, and invasion in different experimental cell models. However, their participation in the cytoarchitecture and mobility of B16F1 melanoma cells exposed to 5-Br-2'-dU is partially known. This work aimed to analyze ROCK2 and miRs 138-5p and 455-3p expression associated with morphological and mobility changes of B16F1 mouse melanoma cells exposed to the thymidine analog 5-Bromo-2'-deoxyuridine (5-Br-2'-dU). We observed an increase (2.2X n = 3, p < 0.05) in the cell area, coinciding with an increase in cell diameter (1.27X n = 3, p < 0.05), as well as greater cell granularity, capacity for circularization, adhesion, which was associated with more significant polymerization of F-actin, collapsed in the intermediate filaments of vimentin (VIM), and coinciding with a decrease in migration (87%). Changes coincided with a decrease in Rock2 mRNA expression (2.88X n = 3, p < 0.05), increased vimentin and a reciprocal decrease in miR-138-5p (1.8X), and an increase in miR-455-3p (2.39X). The Rock2 kinase inhibitor Y27632 partially rescued these changes. These results suggest ROCK2 and VIM regulate the morphological and mobility changes of B16 melanoma cells after exposure to 5-Br-2'-dU, and its expression may be reciprocally regulated, at least in part, by miR-138-5p and miR-455-3p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.