In precision grazing, pasture allocation decisions are made continuously to ensure demand-based feed allowance and efficient grassland utilization. The aim of this study was to evaluate existing prediction models that determine feed scarcity based on changes in dairy cow behavior. During a practice-oriented experiment, two groups of 10 cows each grazed separate paddocks in half-days in six six-day grazing cycles. The allocated grazing areas provided 20% less feed than the total dry matter requirement of the animals for each entire grazing cycle. All cows were equipped with noseband sensors and pedometers to record their head, jaw, and leg activity. Eight behavioral variables were used to classify herbage sufficiency or scarcity using a generalized linear model and a random forest model. Both predictions were compared to two individual-animal and day-specific reference indicators for feed scarcity: reduced milk yields and rumen fill scores that undercut normal variation. The predictive performance of the models was low. The two behavioral variables “daily rumination chews” and “bite frequency” were confirmed as suitable predictors, the latter being particularly sensitive when new feed allocation is present in the grazing set-up within 24 h. Important aspects were identified to be considered if the modeling approach is to be followed up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.