Streptococcus suis is a Gram-positive bacterium responsible for major infections in pigs and economic losses in the livestock industry, but also an emerging zoonotic pathogen causing serious diseases in humans. No vaccine is available so far against this microorganism. Conserved surface proteins are among the most promising candidates for new and effective vaccines. Until now, research on this pathogen has focused on swine isolates, but there is a lack of studies to identify and characterize surface proteins from human clinical isolates. In this work, we performed a comparative proteomic analysis of six clinical isolates from human patients, all belonging to the major serotype 2, by “shaving” the live bacterial cells with trypsin, followed by LC-MS/MS analysis. We identified 131 predicted surface proteins and carried out a label-free semi-quantitative analysis of protein abundances within the six strains. Then, we combined our proteomics results with bioinformatic tools to help improving the selection of novel antigens that can enter the pipeline of vaccine candidate testing. Our work is then a complement to the reverse vaccinology concept.
Next–Generation Sequencing (NGS) implementation to perform accurate diagnosis in acute myeloid leukemia (AML) represents a major challenge for molecular laboratories in terms of specialization, standardization, costs and logistical support. In this context, the PETHEMA cooperative group has established the first nationwide diagnostic network of seven reference laboratories to provide standardized NGS studies for AML patients. Cross–validation (CV) rounds are regularly performed to ensure the quality of NGS studies and to keep updated clinically relevant genes recommended for NGS study. The molecular characterization of 2856 samples (1631 derived from the NGS–AML project; NCT03311815) with standardized NGS of consensus genes (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1 and WT1) showed 97% of patients having at least one mutation. The mutational profile was highly variable according to moment of disease, age and sex, and several co–occurring and exclusion relations were detected. Molecular testing based on NGS allowed accurate diagnosis and reliable prognosis stratification of 954 AML patients according to new genomic classification proposed by Tazi et al. Novel molecular subgroups, such as mutated WT1 and mutations in at least two myelodysplasia–related genes, have been associated with an adverse prognosis in our cohort. In this way, the PETHEMA cooperative group efficiently provides an extensive molecular characterization for AML diagnosis and risk stratification, ensuring technical quality and equity in access to NGS studies.
This study evaluated the persistence of IgM, IgA, and IgG to SARS-CoV-2 spike and nucleocapsid antigens up to 616 days since the onset of symptoms in a longitudinal cohort of 247 primary health care workers from Barcelona, Spain, followed up since the start of the pandemic. The study also assesses factors affecting antibody levels, including comorbidities and the responses to variants of concern as well as the frequency of reinfections. Despite a gradual and significant decline in antibody levels with time, seropositivity to five SARS-CoV-2 antigens combined was always higher than 90% over the whole study period. In a subset of 23 participants who had not yet been vaccinated by November 2021, seropositivity remained at 95.65% (47.83% IgM, 95.65% IgA, 95.65% IgG). IgG seropositivity against Alpha and Delta predominant variants was comparable to that against the Wuhan variant, while it was lower for Gamma and Beta (minority) variants and for IgA and IgM. Antibody levels at the time point closest to infection were associated with age, smoking, obesity, hospitalization, fever, anosmia/hypogeusia, chest pain, and hypertension in multivariable regression models. Up to 1 year later, just before the massive roll out of vaccination, antibody levels were associated with age, occupation, hospitalization, duration of symptoms, anosmia/hypogeusia, fever, and headache. In addition, tachycardia and cutaneous symptoms associated with slower antibody decay, and oxygen supply with faster antibody decay. Eight reinfections (3.23%) were detected in low responders, which is consistent with a sustained protective role for anti-spike naturally acquired antibodies. Stable persistence of IgG and IgA responses and cross-recognition of the predominant variants circulating in the 2020–2021 period indicate long-lasting and largely variant-transcending humoral immunity in the initial 20.5 months of the pandemic, in the absence of vaccination.
Acute myeloid leukemia (AML) is a heterogeneous disease classified into three risk categories (favorable, intermediate and adverse) with significant differences in outcomes. Definitions of risk categories evolve overtime, incorporating advances in molecular knowledge of AML. In this study, we analyzed the impacts of evolving risk classifications in 130 consecutive AML patients in a single-center real-life experience. Complete cytogenetic and molecular data were collected using conventional qPCR and targeted Next Generation Sequencing (NGS). Five-year OS probabilities were consistent among all classification models (roughly 50–72%, 26–32% and 16–20% for favorable, intermediate and adverse risk groups, respectively). In the same way, the medians of survival months and prediction power were similar in all models. In each update, around 20% of patients were re-classified. The adverse category consistently increased over time (31% in MRC, 34% in ELN2010, 50% in ELN2017), reaching up to 56% in the recent ELN2022. Noteworthily, in multivariate models, only age and the presence of TP53 mutations remained statistically significant. With updates in risk-classification models, the percentage of patients assigned to the adverse group is increasing, and so will the indications for allogeneic stem cell transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.