Over the past few years, ground-and space-based atmospheric measurements have revealed a large inter-decadal variability in the amount of radiation reaching the Earth's surface, also known as global dimming and brightening. However, the underlying physical causes of these changes remain unexplained. Clouds and aerosols, or their interactions, could both be responsible for the insolation changes, which in turn may impact the radiative balance of the planet. Here, making use of the special topology and clean environment of the Canary Islands, we compare trends in sunshine duration and temperature series, as a function of altitude. The temperature dataset is constituted by a series of mean, minimum and maximum temperatures, and daily temperature ranges. We find that the insolation and temperature trends are identical at sea level and at more than 2 km height, but the changes in diurnal temperature range are not, suggesting a possible urban heat effect at the sea level location, as well as a possible different influence of clouds and/or aerosols at different altitudes. We also find that during the summer, especially at the high altitude site, there is a clear correspondence between daytime insolation and nighttime cloud-free atmospheric extinction measurements. This suggests that atmospheric aerosol concentrations are the major contributor to the variations in the flux of solar radiation reaching the ground at high altitude sites over the Canary Islands.
Abstract. This paper presents the tools and methodology for performing a routine comprehensive monitoring of consistency and quality of IASI (Infrared Atmospheric Sounding Interferometer) trace gas Level 2 (L2) products (O 3 , CO, N 2 O, CH 4 , and CO 2 ) generated at EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) using ground-based observations at the Izaña Atmospheric Observatory (IZO, Tenerife). As a demonstration the period 2010-2014 was analysed, covering the version 5 of the IASI L2 processor. Firstly, we assess the consistency between the total column (TC) observations from the IASI sensors on board the EUMETSAT Metop-A and Metop-B meteorological satellites (IASI-A and IASI-B respectively) in the subtropical North Atlantic region during the first 2 years of IASI-B operations (2012)(2013)(2014). By analysing different timescales, we probe the daily and annual consistency of the variability observed by IASI-A and IASI-B and thereby assess the suitability of IASI-B for continuation of the IASI-A time series. The continuous intercomparison of both IASI sensors also offers important diagnostics for identifying inconsistencies between the data records and for documenting their temporal stability. Once the consistency of IASI sensors is documented we estimate the overall accuracy of all the IASI trace gas TC products by comparing to coincident ground-based Fourier transform infrared spectrometer (FTS) measurements performed at IZO from 2010 to 2014. The IASI L2 products reproduce the ground-based FTS observations well at the longest temporal scales, i.e. annual cycles and long-term trends for all the trace gases considered (Pearson correlation coefficient, R, larger than 0.95 and 0.75 for long-term trends and annual cycles respectively) with the exception of CO 2 . For CO 2 acceptable agreement is only achieved for long-term trends (R ∼ 0.70). The differences observed between IASI and FTS observations can be in part attributed to the different vertical sensitivities of the two remote sensing instruments and also to the degree of maturity of the IASI products: O 3 and CO are pre-operational, while N 2 O, CH 4 , and CO 2 are, for the period covered by this study, aspirational products only and are not considered mature. Regarding shorter timescales (single or daily measurements), only the O 3 product seems to show good sensitivity to actual atmospheric variations (R ∼ 0.80), while the CO product is only moderately sensitive (R ∼ 0.50). For the remainder of the trace gases, further improvements would be required to capture the day-to-day real atmospheric variability.
Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.
Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of the utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and nonuniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most probably the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that using photometric observations of an Earth-like planet at different photometric bands, it would be possible to discriminate between different surface types. While recent literature propose the red edge feature of vegetation near 0.7 µm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.